© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a250
L11a250
L11a252
L11a252
L11a251
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a251

Visit L11a251's page at Knotilus!

Acknowledgement

L11a251 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X20,15,21,16 X14,6,15,5 X12,4,13,3 X4,14,5,13 X2,19,3,20 X16,7,17,8 X8,9,1,10 X18,12,19,11 X22,18,9,17 X6,22,7,21

Gauss Code: {{1, -6, 4, -5, 3, -11, 7, -8}, {8, -1, 9, -4, 5, -3, 2, -7, 10, -9, 6, -2, 11, -10}}

Jones Polynomial: q-9/2 - 4q-7/2 + 8q-5/2 - 13q-3/2 + 17q-1/2 - 21q1/2 + 20q3/2 - 18q5/2 + 13q7/2 - 8q9/2 + 4q11/2 - q13/2

A2 (sl(3)) Invariant: - q-12 + 2q-10 - 2q-8 + 3q-6 + 5 - 3q2 + 6q4 - 2q6 + 2q8 + q10 - 3q12 + 2q14 - 2q16 + q18

HOMFLY-PT Polynomial: - 4a-3z3 - 4a-3z5 - a-3z7 - a-1z-1 + 8a-1z3 + 12a-1z5 + 6a-1z7 + a-1z9 + az-1 - 4az3 - 4az5 - az7

Kauffman Polynomial: a-7z3 - a-7z5 - a-6z2 + 6a-6z4 - 4a-6z6 - 3a-5z3 + 11a-5z5 - 7a-5z7 - 4a-4z4 + 12a-4z6 - 8a-4z8 + 5a-3z3 - 11a-3z5 + 12a-3z7 - 7a-3z9 + 6a-2z2 - 23a-2z4 + 20a-2z6 - 4a-2z8 - 3a-2z10 - a-1z-1 + 19a-1z3 - 48a-1z5 + 41a-1z7 - 14a-1z9 + 1 + 8z2 - 28z4 + 24z6 - 3z8 - 3z10 - az-1 + 6az3 - 15az5 + 18az7 - 7az9 + 3a2z2 - 13a2z4 + 19a2z6 - 7a2z8 - 4a3z3 + 10a3z5 - 4a3z7 + 2a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14           1
j = 12          3 
j = 10         51 
j = 8        83  
j = 6       105   
j = 4      108    
j = 2     1110     
j = 0    812      
j = -2   59       
j = -4  38        
j = -6 15         
j = -8 3          
j = -101           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 251]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 251]]
Out[4]=   
PD[X[10, 1, 11, 2], X[20, 15, 21, 16], X[14, 6, 15, 5], X[12, 4, 13, 3], 
 
>   X[4, 14, 5, 13], X[2, 19, 3, 20], X[16, 7, 17, 8], X[8, 9, 1, 10], 
 
>   X[18, 12, 19, 11], X[22, 18, 9, 17], X[6, 22, 7, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -6, 4, -5, 3, -11, 7, -8}, 
 
>   {8, -1, 9, -4, 5, -3, 2, -7, 10, -9, 6, -2, 11, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    4      8      13      17                       3/2       5/2
q       - ---- + ---- - ---- + ------- - 21 Sqrt[q] + 20 q    - 18 q    + 
           7/2    5/2    3/2   Sqrt[q]
          q      q      q
 
        7/2      9/2      11/2    13/2
>   13 q    - 8 q    + 4 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    2    2    3       2      4      6      8    10      12      14
5 - q    + --- - -- + -- - 3 q  + 6 q  - 2 q  + 2 q  + q   - 3 q   + 2 q   - 
            10    8    6
           q     q    q
 
       16    18
>   2 q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 251]][a, z]
Out[8]=   
                3      3               5       5             7      7
   1     a   4 z    8 z         3   4 z    12 z         5   z    6 z       7
-(---) + - - ---- + ---- - 4 a z  - ---- + ----- - 4 a z  - -- + ---- - a z  + 
  a z    z     3     a                3      a               3    a
              a                      a                      a
 
     9
    z
>   --
    a
In[9]:=
Kauffman[Link[11, Alternating, 251]][a, z]
Out[9]=   
                      2      2              3      3      3       3
     1    a      2   z    6 z       2  2   z    3 z    5 z    19 z         3
1 - --- - - + 8 z  - -- + ---- + 3 a  z  + -- - ---- + ---- + ----- + 6 a z  - 
    a z   z           6     2               7     5      3      a
                     a     a               a     a      a
 
                         4      4       4                         5       5
       3  3       4   6 z    4 z    23 z        2  4      4  4   z    11 z
>   4 a  z  - 28 z  + ---- - ---- - ----- - 13 a  z  + 2 a  z  - -- + ----- - 
                        6      4      2                           7     5
                       a      a      a                           a     a
 
        5       5                                   6       6       6
    11 z    48 z          5       3  5       6   4 z    12 z    20 z
>   ----- - ----- - 15 a z  + 10 a  z  + 24 z  - ---- + ----- + ----- + 
      3       a                                    6      4       2
     a                                            a      a       a
 
                          7       7       7                                 8
        2  6    4  6   7 z    12 z    41 z          7      3  7      8   8 z
>   19 a  z  - a  z  - ---- + ----- + ----- + 18 a z  - 4 a  z  - 3 z  - ---- - 
                         5      3       a                                  4
                        a      a                                          a
 
       8                9       9                       10
    4 z       2  8   7 z    14 z         9      10   3 z
>   ---- - 7 a  z  - ---- - ----- - 7 a z  - 3 z   - -----
      2                3      a                        2
     a                a                               a
In[10]:=
Kh[L][q, t]
Out[10]=   
         2     1        3       1       5       3       8       5     8
12 + 11 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + 
              10  5    8  4    6  4    6  3    4  3    4  2    2  2   t
             q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     9         2         4        4  2       6  2      6  3      8  3
>   ---- + 10 q  t + 10 q  t + 8 q  t  + 10 q  t  + 5 q  t  + 8 q  t  + 
     2
    q  t
 
       8  4      10  4    10  5      12  5    14  6
>   3 q  t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a251
L11a250
L11a250
L11a252
L11a252