© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a253
L11a253
L11a255
L11a255
L11a254
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a254

Visit L11a254's page at Knotilus!

Acknowledgement

L11a254 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X4,13,5,14 X20,16,21,15 X16,8,17,7 X6,21,7,22 X18,9,19,10 X22,17,9,18 X8,20,1,19

Gauss Code: {{1, -2, 3, -5, 4, -8, 7, -11}, {9, -1, 2, -3, 5, -4, 6, -7, 10, -9, 11, -6, 8, -10}}

Jones Polynomial: - q-21/2 + 3q-19/2 - 5q-17/2 + 7q-15/2 - 9q-13/2 + 10q-11/2 - 10q-9/2 + 8q-7/2 - 7q-5/2 + 4q-3/2 - 3q-1/2 + q1/2

A2 (sl(3)) Invariant: q-30 - q-28 + q-26 - q-24 - q-18 + 3q-16 - q-14 + 3q-12 + q-10 + 2q-8 + 2q-6 + q-2 - 1

HOMFLY-PT Polynomial: - a3z-1 + 6a3z3 + 5a3z5 + a3z7 + a5z-1 - 5a5z - 17a5z3 - 17a5z5 - 7a5z7 - a5z9 + 3a7z + 7a7z3 + 5a7z5 + a7z7

Kauffman Polynomial: 3a2z2 - 7a2z4 + 5a2z6 - a2z8 - a3z-1 - a3z + 18a3z3 - 30a3z5 + 17a3z7 - 3a3z9 + a4 + 7a4z2 - 16a4z4 + a4z6 + 7a4z8 - 2a4z10 - a5z-1 - 5a5z + 33a5z3 - 61a5z5 + 40a5z7 - 8a5z9 + 9a6z2 - 27a6z4 + 17a6z6 + 2a6z8 - 2a6z10 - 4a7z + 11a7z3 - 17a7z5 + 17a7z7 - 5a7z9 + 3a8z2 - 8a8z4 + 15a8z6 - 6a8z8 - a9z + a9z3 + 9a9z5 - 6a9z7 - a10z2 + 7a10z4 - 6a10z6 - a11z + 4a11z3 - 5a11z5 + a12z2 - 3a12z4 - a13z3

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 2           1
j = 0          2 
j = -2         21 
j = -4        52  
j = -6       43   
j = -8      64    
j = -10     44     
j = -12    56      
j = -14   35       
j = -16  24        
j = -18 13         
j = -20 2          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 254]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 254]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[14, 5, 15, 6], 
 
>   X[4, 13, 5, 14], X[20, 16, 21, 15], X[16, 8, 17, 7], X[6, 21, 7, 22], 
 
>   X[18, 9, 19, 10], X[22, 17, 9, 18], X[8, 20, 1, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -5, 4, -8, 7, -11}, 
 
>   {9, -1, 2, -3, 5, -4, 6, -7, 10, -9, 11, -6, 8, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(21/2)     3       5       7       9      10      10     8      7      4
-q        + ----- - ----- + ----- - ----- + ----- - ---- + ---- - ---- + ---- - 
             19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q       q      q      q      q
 
       3
>   ------- + Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -30    -28    -26    -24    -18    3     -14    3     -10   2    2     -2
-1 + q    - q    + q    - q    - q    + --- - q    + --- + q    + -- + -- + q
                                         16           12           8    6
                                        q            q            q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 254]][a, z]
Out[8]=   
   3     5
  a     a       5        7        3  3       5  3      7  3      3  5
-(--) + -- - 5 a  z + 3 a  z + 6 a  z  - 17 a  z  + 7 a  z  + 5 a  z  - 
  z     z
 
        5  5      7  5    3  7      5  7    7  7    5  9
>   17 a  z  + 5 a  z  + a  z  - 7 a  z  + a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 254]][a, z]
Out[9]=   
      3    5
 4   a    a     3        5        7      9      11        2  2      4  2
a  - -- - -- - a  z - 5 a  z - 4 a  z - a  z - a   z + 3 a  z  + 7 a  z  + 
     z    z
 
       6  2      8  2    10  2    12  2       3  3       5  3       7  3
>   9 a  z  + 3 a  z  - a   z  + a   z  + 18 a  z  + 33 a  z  + 11 a  z  + 
 
     9  3      11  3    13  3      2  4       4  4       6  4      8  4
>   a  z  + 4 a   z  - a   z  - 7 a  z  - 16 a  z  - 27 a  z  - 8 a  z  + 
 
       10  4      12  4       3  5       5  5       7  5      9  5      11  5
>   7 a   z  - 3 a   z  - 30 a  z  - 61 a  z  - 17 a  z  + 9 a  z  - 5 a   z  + 
 
       2  6    4  6       6  6       8  6      10  6       3  7       5  7
>   5 a  z  + a  z  + 17 a  z  + 15 a  z  - 6 a   z  + 17 a  z  + 40 a  z  + 
 
        7  7      9  7    2  8      4  8      6  8      8  8      3  9
>   17 a  z  - 6 a  z  - a  z  + 7 a  z  + 2 a  z  - 6 a  z  - 3 a  z  - 
 
       5  9      7  9      4  10      6  10
>   8 a  z  - 5 a  z  - 2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    5      1        2        1        3        2        4        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    22  8    20  7    18  7    18  6    16  6    16  5    14  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        5        6        4        4        6      4      4     2 t
>   ------ + ------ + ------ + ------ + ------ + ----- + ---- + ---- + --- + 
     14  4    12  4    12  3    10  3    10  2    8  2    8      6      4
    q   t    q   t    q   t    q   t    q   t    q  t    q  t   q  t   q
 
                  2
    2 t      2   t     2  3
>   --- + 2 t  + -- + q  t
     2            2
    q            q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a254
L11a253
L11a253
L11a255
L11a255