© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a237
L11a237
L11a239
L11a239
L11a238
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a238

Visit L11a238's page at Knotilus!

Acknowledgement

L11a238 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,4,13,3 X22,12,7,11 X16,9,17,10 X14,22,15,21 X10,15,11,16 X18,6,19,5 X20,18,21,17 X2738 X4,14,5,13 X6,20,1,19

Gauss Code: {{1, -9, 2, -10, 7, -11}, {9, -1, 4, -6, 3, -2, 10, -5, 6, -4, 8, -7, 11, -8, 5, -3}}

Jones Polynomial: - q-5/2 + 3q-3/2 - 8q-1/2 + 13q1/2 - 18q3/2 + 21q5/2 - 22q7/2 + 19q9/2 - 15q11/2 + 9q13/2 - 4q15/2 + q17/2

A2 (sl(3)) Invariant: q-8 + 4q-2 - 2 + 2q2 + q4 - 4q6 + 4q8 - 3q10 + 4q12 + q14 - q16 + 4q18 - 3q20 + q22 + q24 - q26

HOMFLY-PT Polynomial: a-7z + a-7z3 - a-5z-1 - 2a-5z - 4a-5z3 - 2a-5z5 + 2a-3z-1 + 4a-3z + 4a-3z3 + 3a-3z5 + a-3z7 - 2a-1z-1 - 4a-1z - 5a-1z3 - 2a-1z5 + az-1 + 2az + az3

Kauffman Polynomial: - a-10z4 + a-9z3 - 4a-9z5 - 2a-8z2 + 7a-8z4 - 9a-8z6 + 3a-7z - 12a-7z3 + 20a-7z5 - 14a-7z7 + a-6z2 - 8a-6z4 + 21a-6z6 - 14a-6z8 - a-5z-1 + 9a-5z - 29a-5z3 + 33a-5z5 - a-5z7 - 8a-5z9 + 8a-4z2 - 39a-4z4 + 55a-4z6 - 18a-4z8 - 2a-4z10 - 2a-3z-1 + 13a-3z - 28a-3z3 + 10a-3z5 + 22a-3z7 - 12a-3z9 - a-2 + 9a-2z2 - 34a-2z4 + 35a-2z6 - 7a-2z8 - 2a-2z10 - 2a-1z-1 + 11a-1z - 18a-1z3 + 5a-1z5 + 8a-1z7 - 4a-1z9 + 4z2 - 11z4 + 10z6 - 3z8 - az-1 + 4az - 6az3 + 4az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18           1
j = 16          3 
j = 14         61 
j = 12        93  
j = 10       106   
j = 8      129    
j = 6     1011     
j = 4    811      
j = 2   611       
j = 0  27        
j = -2 16         
j = -4 2          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 238]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 238]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 4, 13, 3], X[22, 12, 7, 11], X[16, 9, 17, 10], 
 
>   X[14, 22, 15, 21], X[10, 15, 11, 16], X[18, 6, 19, 5], X[20, 18, 21, 17], 
 
>   X[2, 7, 3, 8], X[4, 14, 5, 13], X[6, 20, 1, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 7, -11}, 
 
>   {9, -1, 4, -6, 3, -2, 10, -5, 6, -4, 8, -7, 11, -8, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    3        8                       3/2       5/2       7/2
-q       + ---- - ------- + 13 Sqrt[q] - 18 q    + 21 q    - 22 q    + 
            3/2   Sqrt[q]
           q
 
        9/2       11/2      13/2      15/2    17/2
>   19 q    - 15 q     + 9 q     - 4 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -8   4       2    4      6      8      10      12    14    16      18
-2 + q   + -- + 2 q  + q  - 4 q  + 4 q  - 3 q   + 4 q   + q   - q   + 4 q   - 
            2
           q
 
       20    22    24    26
>   3 q   + q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 238]][a, z]
Out[8]=   
                                                           3      3      3
   1       2      2    a   z    2 z   4 z   4 z           z    4 z    4 z
-(----) + ---- - --- + - + -- - --- + --- - --- + 2 a z + -- - ---- + ---- - 
   5       3     a z   z    7    5     3     a             7     5      3
  a  z    a  z             a    a     a                   a     a      a
 
       3             5      5      5    7
    5 z       3   2 z    3 z    2 z    z
>   ---- + a z  - ---- + ---- - ---- + --
     a              5      3     a      3
                   a      a            a
In[9]:=
Kauffman[Link[11, Alternating, 238]][a, z]
Out[9]=   
                                                                           2
  -2    1      2      2    a   3 z   9 z   13 z   11 z              2   2 z
-a   - ---- - ---- - --- - - + --- + --- + ---- + ---- + 4 a z + 4 z  - ---- + 
        5      3     a z   z    7     5      3     a                      8
       a  z   a  z             a     a      a                            a
 
     2      2      2    3       3       3       3       3
    z    8 z    9 z    z    12 z    29 z    28 z    18 z         3       4
>   -- + ---- + ---- + -- - ----- - ----- - ----- - ----- - 6 a z  - 11 z  - 
     6     4      2     9     7       5       3       a
    a     a      a     a     a       a       a
 
     4       4      4       4       4      5       5       5       5      5
    z     7 z    8 z    39 z    34 z    4 z    20 z    33 z    10 z    5 z
>   --- + ---- - ---- - ----- - ----- - ---- + ----- + ----- + ----- + ---- + 
     10     8      6      4       2       9      7       5       3      a
    a      a      a      a       a       a      a       a       a
 
                        6       6       6       6       7    7       7      7
         5       6   9 z    21 z    55 z    35 z    14 z    z    22 z    8 z
>   4 a z  + 10 z  - ---- + ----- + ----- + ----- - ----- - -- + ----- + ---- - 
                       8      6       4       2       7      5     3      a
                      a      a       a       a       a      a     a
 
                      8       8      8      9       9      9      10      10
       7      8   14 z    18 z    7 z    8 z    12 z    4 z    2 z     2 z
>   a z  - 3 z  - ----- - ----- - ---- - ---- - ----- - ---- - ----- - -----
                    6       4       2      5      3      a       4       2
                   a       a       a      a      a              a       a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                           2
    2      4     1       2       1     2      6     7   6 q        4
11 q  + 8 q  + ----- + ----- + ----- + -- + ----- + - + ---- + 11 q  t + 
                6  4    4  3    2  3    2    2  2   t    t
               q  t    q  t    q  t    t    q  t
 
        6         6  2       8  2      8  3       10  3      10  4      12  4
>   10 q  t + 11 q  t  + 12 q  t  + 9 q  t  + 10 q   t  + 6 q   t  + 9 q   t  + 
 
       12  5      14  5    14  6      16  6    18  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a238
L11a237
L11a237
L11a239
L11a239