© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a238
L11a238
L11a240
L11a240
L11a239
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a239

Visit L11a239's page at Knotilus!

Acknowledgement

L11a239 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,3,13,4 X20,10,21,9 X22,13,7,14 X14,21,15,22 X10,16,11,15 X18,5,19,6 X16,20,17,19 X2738 X4,11,5,12 X6,17,1,18

Gauss Code: {{1, -9, 2, -10, 7, -11}, {9, -1, 3, -6, 10, -2, 4, -5, 6, -8, 11, -7, 8, -3, 5, -4}}

Jones Polynomial: - q-17/2 + 3q-15/2 - 8q-13/2 + 12q-11/2 - 17q-9/2 + 20q-7/2 - 20q-5/2 + 18q-3/2 - 14q-1/2 + 8q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: q-28 + 2q-26 - q-24 + q-22 + 4q-20 - 3q-18 + 2q-16 + q-14 - 3q-12 + 3q-10 - 2q-8 + 3q-6 - 2q-2 + 5 - 3q2 + 2q6 - q8

HOMFLY-PT Polynomial: a-1z3 - az - az5 - a3z-1 - 4a3z - 3a3z3 - 2a3z5 + 2a5z-1 + 6a5z + 5a5z3 - 2a7z-1 - 4a7z + a9z-1

Kauffman Polynomial: - a-2z4 + 2a-1z3 - 4a-1z5 + 6z4 - 8z6 - az - 6az3 + 16az5 - 12az7 + 5a2z2 - 17a2z4 + 24a2z6 - 13a2z8 - a3z-1 + 5a3z - 17a3z3 + 16a3z5 + 6a3z7 - 8a3z9 + 17a4z2 - 53a4z4 + 57a4z6 - 16a4z8 - 2a4z10 - 2a5z-1 + 9a5z - 15a5z3 - 6a5z5 + 28a5z7 - 12a5z9 - a6 + 15a6z2 - 39a6z4 + 35a6z6 - 6a6z8 - 2a6z10 - 2a7z-1 + 7a7z - 12a7z3 + 2a7z5 + 9a7z7 - 4a7z9 + 3a8z2 - 10a8z4 + 10a8z6 - 3a8z8 - a9z-1 + 4a9z - 6a9z3 + 4a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6           1
j = 4          3 
j = 2         51 
j = 0        93  
j = -2       106   
j = -4      108    
j = -6     1010     
j = -8    710      
j = -10   510       
j = -12  37        
j = -14 16         
j = -16 2          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 239]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 239]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[20, 10, 21, 9], X[22, 13, 7, 14], 
 
>   X[14, 21, 15, 22], X[10, 16, 11, 15], X[18, 5, 19, 6], X[16, 20, 17, 19], 
 
>   X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 7, -11}, 
 
>   {9, -1, 3, -6, 10, -2, 4, -5, 6, -8, 11, -7, 8, -3, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     3       8      12      17     20     20     18      14
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
                   3/2    5/2
>   8 Sqrt[q] - 4 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    2     -24    -22    4     3     2     -14    3     3    2    3
5 + q    + --- - q    + q    + --- - --- + --- + q    - --- + --- - -- + -- - 
            26                  20    18    16           12    10    8    6
           q                   q     q     q            q     q     q    q
 
    2       2      6    8
>   -- - 3 q  + 2 q  - q
     2
    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 239]][a, z]
Out[8]=   
   3       5      7    9                                     3
  a     2 a    2 a    a             3        5        7     z       3  3
-(--) + ---- - ---- + -- - a z - 4 a  z + 6 a  z - 4 a  z + -- - 3 a  z  + 
  z      z      z     z                                     a
 
       5  3      5      3  5
>   5 a  z  - a z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 239]][a, z]
Out[9]=   
       3      5      7    9
  6   a    2 a    2 a    a             3        5        7        9
-a  - -- - ---- - ---- - -- - a z + 5 a  z + 9 a  z + 7 a  z + 4 a  z + 
      z     z      z     z
 
                                                 3
       2  2       4  2       6  2      8  2   2 z         3       3  3
>   5 a  z  + 17 a  z  + 15 a  z  + 3 a  z  + ---- - 6 a z  - 17 a  z  - 
                                               a
 
                                            4
        5  3       7  3      9  3      4   z        2  4       4  4
>   15 a  z  - 12 a  z  - 6 a  z  + 6 z  - -- - 17 a  z  - 53 a  z  - 
                                            2
                                           a
 
                             5
        6  4       8  4   4 z          5       3  5      5  5      7  5
>   39 a  z  - 10 a  z  - ---- + 16 a z  + 16 a  z  - 6 a  z  + 2 a  z  + 
                           a
 
       9  5      6       2  6       4  6       6  6       8  6         7
>   4 a  z  - 8 z  + 24 a  z  + 57 a  z  + 35 a  z  + 10 a  z  - 12 a z  + 
 
       3  7       5  7      7  7    9  7       2  8       4  8      6  8
>   6 a  z  + 28 a  z  + 9 a  z  - a  z  - 13 a  z  - 16 a  z  - 6 a  z  - 
 
       8  8      3  9       5  9      7  9      4  10      6  10
>   3 a  z  - 8 a  z  - 12 a  z  - 4 a  z  - 2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    6      1        2        1        6        3        7        5
9 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      10       7      10      10      10      10      8      10
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 3 t + 
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    6  3
>   5 q  t + q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a239
L11a238
L11a238
L11a240
L11a240