© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a235
L11a235
L11a237
L11a237
L11a236
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a236

Visit L11a236's page at Knotilus!

Acknowledgement

L11a236 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,3,13,4 X20,15,21,16 X16,9,17,10 X10,19,11,20 X22,13,7,14 X14,21,15,22 X18,5,19,6 X2738 X4,11,5,12 X6,17,1,18

Gauss Code: {{1, -9, 2, -10, 8, -11}, {9, -1, 4, -5, 10, -2, 6, -7, 3, -4, 11, -8, 5, -3, 7, -6}}

Jones Polynomial: q-25/2 - 3q-23/2 + 6q-21/2 - 9q-19/2 + 12q-17/2 - 14q-15/2 + 13q-13/2 - 13q-11/2 + 9q-9/2 - 6q-7/2 + 3q-5/2 - q-3/2

A2 (sl(3)) Invariant: - q-40 - 2q-38 + q-36 - q-34 - 2q-32 + 4q-30 + q-26 + 3q-24 + 3q-20 + 2q-16 + 2q-14 - 3q-12 + 2q-10 + q-8 - 2q-6 + q-4

HOMFLY-PT Polynomial: - a3z3 - a5z - 3a5z3 - a7z-1 - 5a7z - 5a7z3 - a9z - 3a9z3 + 2a11z-1 + 4a11z - a13z-1

Kauffman Polynomial: - a3z3 - 3a4z4 - a5z + 4a5z3 - 6a5z5 - a6z2 + 11a6z4 - 9a6z6 - a7z-1 + 6a7z - 17a7z3 + 27a7z5 - 12a7z7 + a8 + 2a8z2 - 15a8z4 + 28a8z6 - 11a8z8 + 2a9z - 14a9z3 + 6a9z5 + 15a9z7 - 7a9z9 - 3a10 + 25a10z2 - 64a10z4 + 50a10z6 - 7a10z8 - 2a10z10 + 2a11z-1 - 7a11z + 21a11z3 - 51a11z5 + 42a11z7 - 10a11z9 - 5a12 + 29a12z2 - 44a12z4 + 18a12z6 + 3a12z8 - 2a12z10 + a13z-1 - 2a13z + 13a13z3 - 24a13z5 + 15a13z7 - 3a13z9 - 2a14 + 7a14z2 - 9a14z4 + 5a14z6 - a14z8

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2           1
j = -4          31
j = -6         3  
j = -8        63  
j = -10       73   
j = -12      66    
j = -14     87     
j = -16    57      
j = -18   47       
j = -20  25        
j = -22 14         
j = -24 2          
j = -261           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 236]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 236]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[20, 15, 21, 16], X[16, 9, 17, 10], 
 
>   X[10, 19, 11, 20], X[22, 13, 7, 14], X[14, 21, 15, 22], X[18, 5, 19, 6], 
 
>   X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 8, -11}, 
 
>   {9, -1, 4, -5, 10, -2, 6, -7, 3, -4, 11, -8, 5, -3, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)     3       6       9      12      14      13      13      9
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ---- - 
            23/2    21/2    19/2    17/2    15/2    13/2    11/2    9/2
           q       q       q       q       q       q       q       q
 
     6      3      -(3/2)
>   ---- + ---- - q
     7/2    5/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -40    2     -36    -34    2     4     -26    3     3     2     2     3
-q    - --- + q    - q    - --- + --- + q    + --- + --- + --- + --- - --- + 
         38                  32    30           24    20    16    14    12
        q                   q     q            q     q     q     q     q
 
     2     -8   2     -4
>   --- + q   - -- + q
     10          6
    q           q
In[8]:=
HOMFLYPT[Link[11, Alternating, 236]][a, z]
Out[8]=   
   7       11    13
  a     2 a     a      5        7      9        11      3  3      5  3
-(--) + ----- - --- - a  z - 5 a  z - a  z + 4 a   z - a  z  - 3 a  z  - 
  z       z      z
 
       7  3      9  3
>   5 a  z  - 3 a  z
In[9]:=
Kauffman[Link[11, Alternating, 236]][a, z]
Out[9]=   
                              7      11    13
 8      10      12      14   a    2 a     a      5        7        9
a  - 3 a   - 5 a   - 2 a   - -- + ----- + --- - a  z + 6 a  z + 2 a  z - 
                             z      z      z
 
       11        13      6  2      8  2       10  2       12  2      14  2
>   7 a   z - 2 a   z - a  z  + 2 a  z  + 25 a   z  + 29 a   z  + 7 a   z  - 
 
     3  3      5  3       7  3       9  3       11  3       13  3      4  4
>   a  z  + 4 a  z  - 17 a  z  - 14 a  z  + 21 a   z  + 13 a   z  - 3 a  z  + 
 
        6  4       8  4       10  4       12  4      14  4      5  5
>   11 a  z  - 15 a  z  - 64 a   z  - 44 a   z  - 9 a   z  - 6 a  z  + 
 
        7  5      9  5       11  5       13  5      6  6       8  6
>   27 a  z  + 6 a  z  - 51 a   z  - 24 a   z  - 9 a  z  + 28 a  z  + 
 
        10  6       12  6      14  6       7  7       9  7       11  7
>   50 a   z  + 18 a   z  + 5 a   z  - 12 a  z  + 15 a  z  + 42 a   z  + 
 
        13  7       8  8      10  8      12  8    14  8      9  9       11  9
>   15 a   z  - 11 a  z  - 7 a   z  + 3 a   z  - a   z  - 7 a  z  - 10 a   z  - 
 
       13  9      10  10      12  10
>   3 a   z  - 2 a   z   - 2 a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2      1         2         1        4        2        5        4
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             26  11    24  10    22  10    22  9    20  9    20  8    18  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      7        5        7        8        7        6        6        7
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  7    16  7    16  6    14  6    14  5    12  5    12  4    10  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        6       3       3      3
>   ------ + ----- + ----- + ----- + ----
     10  3    8  3    8  2    6  2    4
    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a236
L11a235
L11a235
L11a237
L11a237