© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a234
L11a234
L11a236
L11a236
L11a235
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a235

Visit L11a235's page at Knotilus!

Acknowledgement

L11a235 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,3,13,4 X20,13,21,14 X16,9,17,10 X10,19,11,20 X22,15,7,16 X14,21,15,22 X18,5,19,6 X2738 X4,11,5,12 X6,17,1,18

Gauss Code: {{1, -9, 2, -10, 8, -11}, {9, -1, 4, -5, 10, -2, 3, -7, 6, -4, 11, -8, 5, -3, 7, -6}}

Jones Polynomial: q-27/2 - 3q-25/2 + 7q-23/2 - 11q-21/2 + 15q-19/2 - 18q-17/2 + 17q-15/2 - 16q-13/2 + 11q-11/2 - 7q-9/2 + 3q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-42 - 2q-40 - 3q-36 + 3q-32 - q-30 + 5q-28 + q-26 + 2q-24 + 3q-22 - 2q-20 + 4q-18 - q-16 + 2q-12 - 2q-10 + q-8

HOMFLY-PT Polynomial: - 2a5z3 - a5z5 - 4a7z - 8a7z3 - 3a7z5 - 3a9z-1 - 8a9z - 9a9z3 - 3a9z5 + 5a11z-1 + 10a11z + 4a11z3 - 2a13z-1 - a13z

Kauffman Polynomial: 2a5z3 - a5z5 + 5a6z4 - 3a6z6 + 4a7z - 12a7z3 + 14a7z5 - 6a7z7 + 3a8z2 - 15a8z4 + 16a8z6 - 7a8z8 + 3a9z-1 - 11a9z + 18a9z3 - 23a9z5 + 15a9z7 - 6a9z9 - 5a10 + 21a10z2 - 36a10z4 + 23a10z6 - 5a10z8 - 2a10z10 + 5a11z-1 - 22a11z + 47a11z3 - 51a11z5 + 31a11z7 - 10a11z9 - 5a12 + 17a12z2 - 17a12z4 + 12a12z6 - 2a12z8 - 2a12z10 + 2a13z-1 - 7a13z + 10a13z3 - 5a13z5 + 7a13z7 - 4a13z9 - 4a14z2 + 2a14z4 + 7a14z6 - 4a14z8 - 5a15z3 + 8a15z5 - 3a15z7 + a16 - 3a16z2 + 3a16z4 - a16z6

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          31
j = -8         4  
j = -10        73  
j = -12       94   
j = -14      87    
j = -16     109     
j = -18    69      
j = -20   59       
j = -22  26        
j = -24 15         
j = -26 2          
j = -281           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 235]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 235]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[20, 13, 21, 14], X[16, 9, 17, 10], 
 
>   X[10, 19, 11, 20], X[22, 15, 7, 16], X[14, 21, 15, 22], X[18, 5, 19, 6], 
 
>   X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 8, -11}, 
 
>   {9, -1, 4, -5, 10, -2, 3, -7, 6, -4, 11, -8, 5, -3, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(27/2)     3       7      11      15      18      17      16      11
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ----- - 
            25/2    23/2    21/2    19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q       q       q       q
 
     7      3      -(5/2)
>   ---- + ---- - q
     9/2    7/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    2     3     3     -30    5     -26    2     3     2     4     -16
-q    - --- - --- + --- - q    + --- + q    + --- + --- - --- + --- - q    + 
         40    36    32           28           24    22    20    18
        q     q     q            q            q     q     q     q
 
     2     2     -8
>   --- - --- + q
     12    10
    q     q
In[8]:=
HOMFLYPT[Link[11, Alternating, 235]][a, z]
Out[8]=   
    9      11      13
-3 a    5 a     2 a        7        9         11      13        5  3
----- + ----- - ----- - 4 a  z - 8 a  z + 10 a   z - a   z - 2 a  z  - 
  z       z       z
 
       7  3      9  3      11  3    5  5      7  5      9  5
>   8 a  z  - 9 a  z  + 4 a   z  - a  z  - 3 a  z  - 3 a  z
In[9]:=
Kauffman[Link[11, Alternating, 235]][a, z]
Out[9]=   
                          9      11      13
    10      12    16   3 a    5 a     2 a        7         9         11
-5 a   - 5 a   + a   + ---- + ----- + ----- + 4 a  z - 11 a  z - 22 a   z - 
                        z       z       z
 
       13        8  2       10  2       12  2      14  2      16  2      5  3
>   7 a   z + 3 a  z  + 21 a   z  + 17 a   z  - 4 a   z  - 3 a   z  + 2 a  z  - 
 
        7  3       9  3       11  3       13  3      15  3      6  4
>   12 a  z  + 18 a  z  + 47 a   z  + 10 a   z  - 5 a   z  + 5 a  z  - 
 
        8  4       10  4       12  4      14  4      16  4    5  5       7  5
>   15 a  z  - 36 a   z  - 17 a   z  + 2 a   z  + 3 a   z  - a  z  + 14 a  z  - 
 
        9  5       11  5      13  5      15  5      6  6       8  6
>   23 a  z  - 51 a   z  - 5 a   z  + 8 a   z  - 3 a  z  + 16 a  z  + 
 
        10  6       12  6      14  6    16  6      7  7       9  7
>   23 a   z  + 12 a   z  + 7 a   z  - a   z  - 6 a  z  + 15 a  z  + 
 
        11  7      13  7      15  7      8  8      10  8      12  8
>   31 a   z  + 7 a   z  - 3 a   z  - 7 a  z  - 5 a   z  - 2 a   z  - 
 
       14  8      9  9       11  9      13  9      10  10      12  10
>   4 a   z  - 6 a  z  - 10 a   z  - 4 a   z  - 2 a   z   - 2 a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         2         1        5        2        6        5
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             28  11    26  10    24  10    24  9    22  9    22  8    20  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      9        6        9        10       9        8        7        9
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     20  7    18  7    18  6    16  6    16  5    14  5    14  4    12  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        7        3        4      3
>   ------ + ------ + ------ + ----- + ----
     12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a235
L11a234
L11a234
L11a236
L11a236