© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a165
L11a165
L11a167
L11a167
L11a166
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a166

Visit L11a166's page at Knotilus!

Acknowledgement

L11a166 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X6718 X16,13,17,14 X14,6,15,5 X4,16,5,15 X20,11,21,12 X22,18,7,17 X18,22,19,21 X12,19,13,20

Gauss Code: {{1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 8, -11, 5, -6, 7, -5, 9, -10, 11, -8, 10, -9}}

Jones Polynomial: q-17/2 - 3q-15/2 + 6q-13/2 - 10q-11/2 + 12q-9/2 - 14q-7/2 + 13q-5/2 - 11q-3/2 + 8q-1/2 - 5q1/2 + 2q3/2 - q5/2

A2 (sl(3)) Invariant: - q-26 + q-22 - q-20 + 3q-18 + q-14 + 2q-12 - 2q-10 + 3q-8 - 2q-6 + q-4 + q-2 - 1 + 2q2 + q6 + q8

HOMFLY-PT Polynomial: - a-1z-1 - 3a-1z - a-1z3 + 2az-1 + 6az + 7az3 + 2az5 - 2a3z-1 - 6a3z - 6a3z3 - 4a3z5 - a3z7 + a5z-1 + 4a5z + 6a5z3 + 2a5z5 - 2a7z - a7z3

Kauffman Polynomial: - a-1z-1 + 5a-1z - 8a-1z3 + 5a-1z5 - a-1z7 + 3z2 - 9z4 + 8z6 - 2z8 - 2az-1 + 11az - 18az3 + 7az5 + 4az7 - 2az9 - a2 + 3a2z2 - 13a2z4 + 14a2z6 - 2a2z8 - a2z10 - 2a3z-1 + 10a3z - 15a3z3 + 4a3z5 + 10a3z7 - 5a3z9 + a4z2 - 8a4z4 + 15a4z6 - 5a4z8 - a4z10 - a5z-1 + 6a5z - 12a5z3 + 12a5z5 - a5z7 - 3a5z9 - 2a6z2 + 2a6z4 + 4a6z6 - 5a6z8 + a7z - 4a7z3 + 7a7z5 - 6a7z7 - 2a8z2 + 5a8z4 - 5a8z6 - a9z + 3a9z3 - 3a9z5 + a10z2 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6           1
j = 4          1 
j = 2         41 
j = 0        41  
j = -2       74   
j = -4      75    
j = -6     76     
j = -8    68      
j = -10   46       
j = -12  26        
j = -14 14         
j = -16 2          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 166]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 166]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[6, 7, 1, 8], 
 
>   X[16, 13, 17, 14], X[14, 6, 15, 5], X[4, 16, 5, 15], X[20, 11, 21, 12], 
 
>   X[22, 18, 7, 17], X[18, 22, 19, 21], X[12, 19, 13, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -7, 6, -4}, 
 
>   {4, -1, 2, -3, 8, -11, 5, -6, 7, -5, 9, -10, 11, -8, 10, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)     3       6      10      12     14     13     11       8
q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 
            15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q      q      q      q
 
                   3/2    5/2
>   5 Sqrt[q] + 2 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -26    -22    -20    3     -14    2     2    3    2     -4    -2      2
-1 - q    + q    - q    + --- + q    + --- - --- + -- - -- + q   + q   + 2 q  + 
                           18           12    10    8    6
                          q            q     q     q    q
 
     6    8
>   q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 166]][a, z]
Out[8]=   
                  3    5                                             3
   1     2 a   2 a    a    3 z              3        5        7     z
-(---) + --- - ---- + -- - --- + 6 a z - 6 a  z + 4 a  z - 2 a  z - -- + 
  a z     z     z     z     a                                       a
 
         3      3  3      5  3    7  3        5      3  5      5  5    3  7
>   7 a z  - 6 a  z  + 6 a  z  - a  z  + 2 a z  - 4 a  z  + 2 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 166]][a, z]
Out[9]=   
                     3    5
  2    1    2 a   2 a    a    5 z                3        5      7      9
-a  - --- - --- - ---- - -- + --- + 11 a z + 10 a  z + 6 a  z + a  z - a  z + 
      a z    z     z     z     a
 
                                                             3
       2      2  2    4  2      6  2      8  2    10  2   8 z          3
>   3 z  + 3 a  z  + a  z  - 2 a  z  - 2 a  z  + a   z  - ---- - 18 a z  - 
                                                           a
 
        3  3       5  3      7  3      9  3      4       2  4      4  4
>   15 a  z  - 12 a  z  - 4 a  z  + 3 a  z  - 9 z  - 13 a  z  - 8 a  z  + 
 
                                    5
       6  4      8  4    10  4   5 z         5      3  5       5  5      7  5
>   2 a  z  + 5 a  z  - a   z  + ---- + 7 a z  + 4 a  z  + 12 a  z  + 7 a  z  - 
                                  a
 
                                                                7
       9  5      6       2  6       4  6      6  6      8  6   z         7
>   3 a  z  + 8 z  + 14 a  z  + 15 a  z  + 4 a  z  - 5 a  z  - -- + 4 a z  + 
                                                               a
 
        3  7    5  7      7  7      8      2  8      4  8      6  8        9
>   10 a  z  - a  z  - 6 a  z  - 2 z  - 2 a  z  - 5 a  z  - 5 a  z  - 2 a z  - 
 
       3  9      5  9    2  10    4  10
>   5 a  z  - 3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
5    7      1        2        1        4        2        6        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    18  7    16  6    14  6    14  5    12  5    12  4    10  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      6        6       8       7      6      7           4 t    2      2  2
>   ------ + ----- + ----- + ----- + ---- + ---- + 4 t + --- + t  + 4 q  t  + 
     10  3    8  3    8  2    6  2    6      4            2
    q   t    q  t    q  t    q  t    q  t   q  t         q
 
     2  3    4  3    6  4
>   q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a166
L11a165
L11a165
L11a167
L11a167