© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a166
L11a166
L11a168
L11a168
L11a167
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a167

Visit L11a167's page at Knotilus!

Acknowledgement

L11a167 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,9,17,10 X6718 X20,13,21,14 X10,4,11,3 X14,6,15,5 X4,12,5,11 X22,17,7,18 X18,21,19,22 X12,19,13,20 X2,16,3,15

Gauss Code: {{1, -11, 5, -7, 6, -3}, {3, -1, 2, -5, 7, -10, 4, -6, 11, -2, 8, -9, 10, -4, 9, -8}}

Jones Polynomial: q-15/2 - 4q-13/2 + 9q-11/2 - 13q-9/2 + 18q-7/2 - 21q-5/2 + 19q-3/2 - 18q-1/2 + 12q1/2 - 7q3/2 + 3q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 2q-20 - 2q-18 - q-16 - 6q-12 + 3q-10 + 4q-6 + 5q-4 - q-2 + 5 - 2q2 + q4 + 2q6 - q8 + q10

HOMFLY-PT Polynomial: - a-1z-1 - 3a-1z - 3a-1z3 - a-1z5 + 5az + 7az3 + 4az5 + az7 + 2a3z-1 + 2a3z3 + 3a3z5 + a3z7 - a5z-1 - a5z - 2a5z3 - a5z5

Kauffman Polynomial: - a-3z + 2a-3z3 - a-3z5 - 2a-2z2 + 5a-2z4 - 3a-2z6 - a-1z-1 + 3a-1z - 4a-1z3 + 7a-1z5 - 5a-1z7 + 1 - 2z2 - 2z4 + 7z6 - 6z8 + 5az - 9az3 + 4az5 + 3az7 - 5az9 - 3a2 + 7a2z2 - 20a2z4 + 22a2z6 - 8a2z8 - 2a2z10 + 2a3z-1 + 3a3z3 - 15a3z5 + 22a3z7 - 11a3z9 - 5a4 + 12a4z2 - 26a4z4 + 30a4z6 - 9a4z8 - 2a4z10 + a5z-1 - a5z + 2a5z3 - 2a5z5 + 10a5z7 - 6a5z9 - 2a6 + 4a6z2 - 11a6z4 + 17a6z6 - 7a6z8 - 4a7z3 + 9a7z5 - 4a7z7 - a8z2 + 2a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          2 
j = 4         51 
j = 2        83  
j = 0       104   
j = -2      109    
j = -4     119     
j = -6    710      
j = -8   611       
j = -10  37        
j = -12 16         
j = -14 3          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 167]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 167]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 9, 17, 10], X[6, 7, 1, 8], X[20, 13, 21, 14], 
 
>   X[10, 4, 11, 3], X[14, 6, 15, 5], X[4, 12, 5, 11], X[22, 17, 7, 18], 
 
>   X[18, 21, 19, 22], X[12, 19, 13, 20], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -7, 6, -3}, 
 
>   {3, -1, 2, -5, 7, -10, 4, -6, 11, -2, 8, -9, 10, -4, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     4       9      13     18     21     19      18
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 12 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   7 q    + 3 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    2     2     -16    6     3    4    5     -2      2    4      6
5 - q    + --- - --- - q    - --- + --- + -- + -- - q   - 2 q  + q  + 2 q  - 
            20    18           12    10    6    4
           q     q            q     q     q    q
 
     8    10
>   q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 167]][a, z]
Out[8]=   
            3    5                           3
   1     2 a    a    3 z            5     3 z         3      3  3      5  3
-(---) + ---- - -- - --- + 5 a z - a  z - ---- + 7 a z  + 2 a  z  - 2 a  z  - 
  a z     z     z     a                    a
 
     5
    z         5      3  5    5  5      7    3  7
>   -- + 4 a z  + 3 a  z  - a  z  + a z  + a  z
    a
In[9]:=
Kauffman[Link[11, Alternating, 167]][a, z]
Out[9]=   
                                  3    5
       2      4      6    1    2 a    a    z    3 z            5        2
1 - 3 a  - 5 a  - 2 a  - --- + ---- + -- - -- + --- + 5 a z - a  z - 2 z  - 
                         a z    z     z     3    a
                                           a
 
       2                                             3      3
    2 z       2  2       4  2      6  2    8  2   2 z    4 z         3
>   ---- + 7 a  z  + 12 a  z  + 4 a  z  - a  z  + ---- - ---- - 9 a z  + 
      2                                             3     a
     a                                             a
 
                                            4
       3  3      5  3      7  3      4   5 z        2  4       4  4
>   3 a  z  + 2 a  z  - 4 a  z  - 2 z  + ---- - 20 a  z  - 26 a  z  - 
                                           2
                                          a
 
                          5      5
        6  4      8  4   z    7 z         5       3  5      5  5      7  5
>   11 a  z  + 2 a  z  - -- + ---- + 4 a z  - 15 a  z  - 2 a  z  + 9 a  z  + 
                          3    a
                         a
 
              6                                               7
       6   3 z        2  6       4  6       6  6    8  6   5 z         7
>   7 z  - ---- + 22 a  z  + 30 a  z  + 17 a  z  - a  z  - ---- + 3 a z  + 
             2                                              a
            a
 
        3  7       5  7      7  7      8      2  8      4  8      6  8
>   22 a  z  + 10 a  z  - 4 a  z  - 6 z  - 8 a  z  - 9 a  z  - 7 a  z  - 
 
         9       3  9      5  9      2  10      4  10
>   5 a z  - 11 a  z  - 6 a  z  - 2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     9      1        3        1        6        3        7        6      11
10 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10      11      9      10             2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 4 t + 8 q  t + 3 q  t  + 5 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a167
L11a166
L11a166
L11a168
L11a168