© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a115
L11a115
L11a117
L11a117
L11a116
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a116

Visit L11a116's page at Knotilus!

Acknowledgement

L11a116 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X22,15,5,16 X16,7,17,8 X8,21,9,22 X20,9,21,10 X18,11,19,12 X12,17,13,18 X10,19,11,20 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -5, 6, -9, 7, -8, 11, -2, 3, -4, 8, -7, 9, -6, 5, -3}}

Jones Polynomial: q-25/2 - 2q-23/2 + 4q-21/2 - 6q-19/2 + 8q-17/2 - 10q-15/2 + 10q-13/2 - 10q-11/2 + 7q-9/2 - 6q-7/2 + 3q-5/2 - q-3/2

A2 (sl(3)) Invariant: - q-40 - 2q-38 - q-34 - q-32 + 3q-30 + 2q-24 + 2q-20 + q-18 + 2q-16 + 3q-14 - q-12 + 2q-10 + q-8 - 2q-6 + q-4

HOMFLY-PT Polynomial: - a3z3 - a5z-1 - 3a5z - 3a5z3 + a7z-1 - a7z - 3a7z3 - a9z-1 - a9z - 2a9z3 + 2a11z-1 + 3a11z - a13z-1

Kauffman Polynomial: - a3z3 - 3a4z4 + a5z-1 - 3a5z + 6a5z3 - 6a5z5 - a6 + 8a6z4 - 7a6z6 + a7z-1 - 2a7z + 11a7z5 - 7a7z7 + a8z2 - 4a8z4 + 13a8z6 - 6a8z8 + a9z-1 - 5a9z + 4a9z3 - 4a9z5 + 10a9z7 - 4a9z9 - 4a10 + 23a10z2 - 48a10z4 + 34a10z6 - 5a10z8 - a10z10 + 2a11z-1 - 9a11z + 23a11z3 - 40a11z5 + 28a11z7 - 6a11z9 - 7a12 + 32a12z2 - 45a12z4 + 20a12z6 - a12z10 + a13z-1 - 3a13z + 12a13z3 - 19a13z5 + 11a13z7 - 2a13z9 - 3a14 + 10a14z2 - 12a14z4 + 6a14z6 - a14z8

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2           1
j = -4          31
j = -6         3  
j = -8        43  
j = -10       63   
j = -12      55    
j = -14     55     
j = -16    35      
j = -18   35       
j = -20  13        
j = -22 13         
j = -24 1          
j = -261           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 116]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 116]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[22, 15, 5, 16], X[16, 7, 17, 8], 
 
>   X[8, 21, 9, 22], X[20, 9, 21, 10], X[18, 11, 19, 12], X[12, 17, 13, 18], 
 
>   X[10, 19, 11, 20], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -5, 6, -9, 7, -8, 11, -2, 3, -4, 8, -7, 
 
>    9, -6, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)     2       4       6       8      10      10      10      7
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ---- - 
            23/2    21/2    19/2    17/2    15/2    13/2    11/2    9/2
           q       q       q       q       q       q       q       q
 
     6      3      -(3/2)
>   ---- + ---- - q
     7/2    5/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -40    2     -34    -32    3     2     2     -18    2     3     -12    2
-q    - --- - q    - q    + --- + --- + --- + q    + --- + --- - q    + --- + 
         38                  30    24    20           16    14           10
        q                   q     q     q            q     q            q
 
     -8   2     -4
>   q   - -- + q
           6
          q
In[8]:=
HOMFLYPT[Link[11, Alternating, 116]][a, z]
Out[8]=   
   5     7    9      11    13
  a     a    a    2 a     a        5      7      9        11      3  3
-(--) + -- - -- + ----- - --- - 3 a  z - a  z - a  z + 3 a   z - a  z  - 
  z     z    z      z      z
 
       5  3      7  3      9  3
>   3 a  z  - 3 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 116]][a, z]
Out[9]=   
                               5    7    9      11    13
  6      10      12      14   a    a    a    2 a     a        5        7
-a  - 4 a   - 7 a   - 3 a   + -- + -- + -- + ----- + --- - 3 a  z - 2 a  z - 
                              z    z    z      z      z
 
       9        11        13      8  2       10  2       12  2       14  2
>   5 a  z - 9 a   z - 3 a   z + a  z  + 23 a   z  + 32 a   z  + 10 a   z  - 
 
     3  3      5  3      9  3       11  3       13  3      4  4      6  4
>   a  z  + 6 a  z  + 4 a  z  + 23 a   z  + 12 a   z  - 3 a  z  + 8 a  z  - 
 
       8  4       10  4       12  4       14  4      5  5       7  5
>   4 a  z  - 48 a   z  - 45 a   z  - 12 a   z  - 6 a  z  + 11 a  z  - 
 
       9  5       11  5       13  5      6  6       8  6       10  6
>   4 a  z  - 40 a   z  - 19 a   z  - 7 a  z  + 13 a  z  + 34 a   z  + 
 
        12  6      14  6      7  7       9  7       11  7       13  7
>   20 a   z  + 6 a   z  - 7 a  z  + 10 a  z  + 28 a   z  + 11 a   z  - 
 
       8  8      10  8    14  8      9  9      11  9      13  9    10  10
>   6 a  z  - 5 a   z  - a   z  - 4 a  z  - 6 a   z  - 2 a   z  - a   z   - 
 
     12  10
>   a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2      1         1         1        3        1        3        3
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             26  11    24  10    22  10    22  9    20  9    20  8    18  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      5        3        5        5        5        5        5        6
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  7    16  7    16  6    14  6    14  5    12  5    12  4    10  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        4       3       3      3
>   ------ + ----- + ----- + ----- + ----
     10  3    8  3    8  2    6  2    4
    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a116
L11a115
L11a115
L11a117
L11a117