© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a116
L11a116
L11a118
L11a118
L11a117
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a117

Visit L11a117's page at Knotilus!

Acknowledgement

L11a117 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,4,15,3 X16,8,17,7 X22,14,5,13 X8,22,9,21 X20,10,21,9 X18,12,19,11 X12,18,13,17 X10,20,11,19 X2536 X4,16,1,15

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -5, 6, -9, 7, -8, 4, -2, 11, -3, 8, -7, 9, -6, 5, -4}}

Jones Polynomial: - q-1/2 + 2q1/2 - 5q3/2 + 6q5/2 - 9q7/2 + 10q9/2 - 10q11/2 + 8q13/2 - 6q15/2 + 4q17/2 - 2q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + q2 + 3q4 + 3q8 + q10 + 2q14 + 2q18 - q22 + q24 - 2q26 - q28 - q32

HOMFLY-PT Polynomial: a-9z-1 + 2a-9z + a-9z3 - 2a-7z-1 - 4a-7z - 3a-7z3 - a-7z5 + a-5z-1 + a-5z - a-5z3 - a-5z5 - a-3z-1 - a-3z - 2a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: - 3a-12z2 + 4a-12z4 - a-12z6 - 4a-11z3 + 7a-11z5 - 2a-11z7 - 3a-10 + 11a-10z2 - 15a-10z4 + 12a-10z6 - 3a-10z8 + a-9z-1 - 5a-9z + 17a-9z3 - 21a-9z5 + 13a-9z7 - 3a-9z9 - 7a-8 + 29a-8z2 - 39a-8z4 + 18a-8z6 - a-8z8 - a-8z10 + 2a-7z-1 - 10a-7z + 25a-7z3 - 38a-7z5 + 22a-7z7 - 5a-7z9 - 4a-6 + 15a-6z2 - 23a-6z4 + 9a-6z6 - a-6z10 + a-5z-1 - 5a-5z + 7a-5z3 - 8a-5z5 + 5a-5z7 - 2a-5z9 + a-4z4 + 2a-4z6 - 2a-4z8 + a-3z-1 - 3a-3z + 6a-3z3 + a-3z5 - 2a-3z7 - a-2 + 4a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          1 
j = 18         31 
j = 16        31  
j = 14       53   
j = 12      53    
j = 10     55     
j = 8    45      
j = 6   25       
j = 4  34        
j = 2 14         
j = 0 1          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 117]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 117]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 4, 15, 3], X[16, 8, 17, 7], X[22, 14, 5, 13], 
 
>   X[8, 22, 9, 21], X[20, 10, 21, 9], X[18, 12, 19, 11], X[12, 18, 13, 17], 
 
>   X[10, 20, 11, 19], X[2, 5, 3, 6], X[4, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -5, 6, -9, 7, -8, 4, -2, 11, -3, 8, -7, 
 
>    9, -6, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2      7/2       9/2       11/2
-(-------) + 2 Sqrt[q] - 5 q    + 6 q    - 9 q    + 10 q    - 10 q     + 
  Sqrt[q]
 
       13/2      15/2      17/2      19/2    21/2
>   8 q     - 6 q     + 4 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4      8    10      14      18    22    24      26    28    32
q   + q  + 3 q  + 3 q  + q   + 2 q   + 2 q   - q   + q   - 2 q   - q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 117]][a, z]
Out[8]=   
                                                               3      3    3
 1      2      1      1      1    2 z   4 z   z    z    2 z   z    3 z    z
---- - ---- + ---- - ---- + --- + --- - --- + -- - -- + --- + -- - ---- - -- - 
 9      7      5      3     a z    9     7     5    3    a     9     7     5
a  z   a  z   a  z   a  z         a     a     a    a          a     a     a
 
       3    3    5    5    5
    2 z    z    z    z    z
>   ---- + -- - -- - -- - --
      3    a     7    5    3
     a          a    a    a
In[9]:=
Kauffman[Link[11, Alternating, 117]][a, z]
Out[9]=   
-3    7    4     -2    1      2      1      1      1    5 z   10 z   5 z
--- - -- - -- - a   + ---- + ---- + ---- + ---- + --- - --- - ---- - --- - 
 10    8    6          9      7      5      3     a z    9      7     5
a     a    a          a  z   a  z   a  z   a  z         a      a     a
 
                   2       2       2       2      3       3       3      3
    3 z   3 z   3 z    11 z    29 z    15 z    4 z    17 z    25 z    7 z
>   --- - --- - ---- + ----- + ----- + ----- - ---- + ----- + ----- + ---- + 
     3     a     12      10      8       6      11      9       7       5
    a           a       a       a       a      a       a       a       a
 
       3      3      4       4       4       4    4      4      5       5
    6 z    3 z    4 z    15 z    39 z    23 z    z    4 z    7 z    21 z
>   ---- + ---- + ---- - ----- - ----- - ----- + -- + ---- + ---- - ----- - 
      3     a      12      10      8       6      4     2     11      9
     a            a       a       a       a      a     a     a       a
 
        5      5    5    5    6        6       6      6      6      6      7
    38 z    8 z    z    z    z     12 z    18 z    9 z    2 z    2 z    2 z
>   ----- - ---- + -- - -- - --- + ----- + ----- + ---- + ---- - ---- - ---- + 
      7       5     3   a     12     10      8       6      4      2     11
     a       a     a         a      a       a       a      a      a     a
 
        7       7      7      7      8    8      8      9      9      9    10
    13 z    22 z    5 z    2 z    3 z    z    2 z    3 z    5 z    2 z    z
>   ----- + ----- + ---- - ---- - ---- - -- - ---- - ---- - ---- - ---- - --- - 
      9       7       5      3     10     8     4      9      7      5     8
     a       a       a      a     a      a     a      a      a      a     a
 
     10
    z
>   ---
     6
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
4 q  + 3 q  + ----- + - + -- + 4 q  t + 2 q  t + 5 q  t  + 4 q  t  + 5 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   5 q   t  + 5 q   t  + 5 q   t  + 3 q   t  + 5 q   t  + 3 q   t  + 
 
       16  6    16  7      18  7    18  8    20  8    22  9
>   3 q   t  + q   t  + 3 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a117
L11a116
L11a116
L11a118
L11a118