© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a114
L11a114
L11a116
L11a116
L11a115
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a115

Visit L11a115's page at Knotilus!

Acknowledgement

L11a115 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X16,8,17,7 X22,18,5,17 X18,11,19,12 X20,9,21,10 X10,19,11,20 X8,21,9,22 X12,16,13,15 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -8, 6, -7, 5, -9, 11, -2, 9, -3, 4, -5, 7, -6, 8, -4}}

Jones Polynomial: - q-17/2 + 2q-15/2 - 5q-13/2 + 8q-11/2 - 11q-9/2 + 14q-7/2 - 15q-5/2 + 13q-3/2 - 11q-1/2 + 7q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: q-28 + 2q-26 + q-22 + 2q-20 - 3q-18 - 3q-12 + 2q-10 + 3q-6 + 2q-4 - q-2 + 4 - 2q2 + 2q6 - q8

HOMFLY-PT Polynomial: a-1z3 - az-1 - 2az - az3 - az5 + a3z-1 - a3z5 + a5z-1 + 3a5z + 3a5z3 - 2a7z-1 - 3a7z + a9z-1

Kauffman Polynomial: - a-2z4 + 3a-1z3 - 4a-1z5 + 7z4 - 7z6 + az-1 - 3az + 9az5 - 8az7 - a2 + 4a2z2 - 6a2z4 + 10a2z6 - 7a2z8 + a3z-1 - 2a3z - 4a3z3 + 7a3z5 + 2a3z7 - 4a3z9 - 2a4 + 12a4z2 - 30a4z4 + 29a4z6 - 8a4z8 - a4z10 - a5z-1 + 8a5z - 11a5z3 - 4a5z5 + 15a5z7 - 6a5z9 - 3a6 + 12a6z2 - 25a6z4 + 20a6z6 - 3a6z8 - a6z10 - 2a7z-1 + 12a7z - 18a7z3 + 7a7z5 + 4a7z7 - 2a7z9 - a8 + 4a8z2 - 9a8z4 + 8a8z6 - 2a8z8 - a9z-1 + 5a9z - 8a9z3 + 5a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6           1
j = 4          3 
j = 2         41 
j = 0        73  
j = -2       75   
j = -4      86    
j = -6     67     
j = -8    58      
j = -10   47       
j = -12  14        
j = -14 14         
j = -16 1          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 115]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 115]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[16, 8, 17, 7], X[22, 18, 5, 17], 
 
>   X[18, 11, 19, 12], X[20, 9, 21, 10], X[10, 19, 11, 20], X[8, 21, 9, 22], 
 
>   X[12, 16, 13, 15], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -8, 6, -7, 5, -9, 11, -2, 9, -3, 4, -5, 
 
>    7, -6, 8, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     2       5       8      11     14     15     13      11
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
                   3/2    5/2
>   7 Sqrt[q] - 4 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    2     -22    2     3     3     2    3    2     -2      2      6    8
4 + q    + --- + q    + --- - --- - --- + --- + -- + -- - q   - 2 q  + 2 q  - q
            26           20    18    12    10    6    4
           q            q     q     q     q     q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 115]][a, z]
Out[8]=   
        3    5      7    9                              3
  a    a    a    2 a    a               5        7     z       3      5  3
-(-) + -- + -- - ---- + -- - 2 a z + 3 a  z - 3 a  z + -- - a z  + 3 a  z  - 
  z    z    z     z     z                              a
 
       5    3  5
>   a z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 115]][a, z]
Out[9]=   
                              3    5      7    9
  2      4      6    8   a   a    a    2 a    a               3        5
-a  - 2 a  - 3 a  - a  + - + -- - -- - ---- - -- - 3 a z - 2 a  z + 8 a  z + 
                         z   z    z     z     z
 
                                                                    3
        7        9        2  2       4  2       6  2      8  2   3 z
>   12 a  z + 5 a  z + 4 a  z  + 12 a  z  + 12 a  z  + 4 a  z  + ---- - 
                                                                  a
 
                                                      4
       3  3       5  3       7  3      9  3      4   z       2  4       4  4
>   4 a  z  - 11 a  z  - 18 a  z  - 8 a  z  + 7 z  - -- - 6 a  z  - 30 a  z  - 
                                                      2
                                                     a
 
                            5
        6  4      8  4   4 z         5      3  5      5  5      7  5
>   25 a  z  - 9 a  z  - ---- + 9 a z  + 7 a  z  - 4 a  z  + 7 a  z  + 
                          a
 
       9  5      6       2  6       4  6       6  6      8  6        7
>   5 a  z  - 7 z  + 10 a  z  + 29 a  z  + 20 a  z  + 8 a  z  - 8 a z  + 
 
       3  7       5  7      7  7    9  7      2  8      4  8      6  8
>   2 a  z  + 15 a  z  + 4 a  z  - a  z  - 7 a  z  - 8 a  z  - 3 a  z  - 
 
       8  8      3  9      5  9      7  9    4  10    6  10
>   2 a  z  - 4 a  z  - 6 a  z  - 2 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    5      1        1        1        4        1        4        4
7 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        5       8       6       7       8      6      7
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 3 t + 
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    6  3
>   4 q  t + q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a115
L11a114
L11a114
L11a116
L11a116