© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n4
L10n4
L10n6
L10n6
L10n5
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n5

Visit L10n5's page at Knotilus!

Acknowledgement

L10n5 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X17,1,18,4 X9,14,10,15 X3849 X5,11,6,10 X13,5,14,20 X11,19,12,18 X19,13,20,12 X2,16,3,15

Gauss Code: {{1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -8, 9, -7, 4, 10, -2, -3, 8, -9, 7}}

Jones Polynomial: - q-5/2 + q-3/2 - 2q-1/2 + 2q1/2 - 3q3/2 + 2q5/2 - 2q7/2 + 2q9/2 - q11/2

A2 (sl(3)) Invariant: q-8 + q-6 + 2q-4 + 2q-2 + 1 + q2 - q10 + q16 + q18

HOMFLY-PT Polynomial: - a-5z-1 - a-5z + 3a-3z-1 + 6a-3z + 2a-3z3 - 4a-1z-1 - 8a-1z - 5a-1z3 - a-1z5 + 2az-1 + 3az + az3

Kauffman Polynomial: - a-7z + a-6 - 2a-6z2 - a-5z-1 + 2a-5z3 - a-5z5 + 3a-4 - 9a-4z2 + 8a-4z4 - 2a-4z6 - 3a-3z-1 + 11a-3z - 13a-3z3 + 9a-3z5 - 2a-3z7 + 3a-2 - 7a-2z2 + 2a-2z4 + 3a-2z6 - a-2z8 - 4a-1z-1 + 17a-1z - 26a-1z3 + 16a-1z5 - 3a-1z7 + 2 - 6z4 + 5z6 - z8 - 2az-1 + 7az - 11az3 + 6az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 12        1
j = 10       1 
j = 8      22 
j = 6     11  
j = 4    221  
j = 2   23    
j = 0   11    
j = -2 12      
j = -4         
j = -61        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 5]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 5]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[17, 1, 18, 4], X[9, 14, 10, 15], 
 
>   X[3, 8, 4, 9], X[5, 11, 6, 10], X[13, 5, 14, 20], X[11, 19, 12, 18], 
 
>   X[19, 13, 20, 12], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -8, 9, -7, 4, 10, -2, -3, 8, 
 
>    -9, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    -(3/2)      2                     3/2      5/2      7/2      9/2
-q       + q       - ------- + 2 Sqrt[q] - 3 q    + 2 q    - 2 q    + 2 q    - 
                     Sqrt[q]
 
     11/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6   2    2     2    10    16    18
1 + q   + q   + -- + -- + q  - q   + q   + q
                 4    2
                q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 5]][a, z]
Out[8]=   
                                                         3      3           5
   1       3      4    2 a   z    6 z   8 z           2 z    5 z       3   z
-(----) + ---- - --- + --- - -- + --- - --- + 3 a z + ---- - ---- + a z  - --
   5       3     a z    z     5    3     a              3     a            a
  a  z    a  z               a    a                    a
In[9]:=
Kauffman[Link[10, NonAlternating, 5]][a, z]
Out[9]=   
                                                                            2
     -6   3    3     1      3      4    2 a   z    11 z   17 z           2 z
2 + a   + -- + -- - ---- - ---- - --- - --- - -- + ---- + ---- + 7 a z - ---- - 
           4    2    5      3     a z    z     7     3     a               6
          a    a    a  z   a  z               a     a                     a
 
       2      2      3       3       3                       4      4    5
    9 z    7 z    2 z    13 z    26 z          3      4   8 z    2 z    z
>   ---- - ---- + ---- - ----- - ----- - 11 a z  - 6 z  + ---- + ---- - -- + 
      4      2      5      3       a                        4      2     5
     a      a      a      a                                a      a     a
 
       5       5                      6      6      7      7                8
    9 z    16 z         5      6   2 z    3 z    2 z    3 z       7    8   z
>   ---- + ----- + 6 a z  + 5 z  - ---- + ---- - ---- - ---- - a z  - z  - --
      3      a                       4      2      3     a                  2
     a                              a      a      a                        a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                 2
       2      4     1       1       2     1   2 q       4      6      4  2
1 + 3 q  + 2 q  + ----- + ----- + ----- + - + ---- + 2 q  t + q  t + q  t  + 
                   6  4    2  3    2  2   t    t
                  q  t    q  t    q  t
 
     6  2      8  2      8  3    10  3    12  4
>   q  t  + 2 q  t  + 2 q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n5
L10n4
L10n4
L10n6
L10n6