© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n5
L10n5
L10n7
L10n7
L10n6
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n6

Visit L10n6's page at Knotilus!

Acknowledgement

L10n6 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X8493 X5,11,6,10 X13,5,14,20 X11,19,12,18 X19,13,20,12 X2,16,3,15

Gauss Code: {{1, -10, 5, -3}, {-6, -1, 2, -5, -4, 6, -8, 9, -7, 4, 10, -2, 3, 8, -9, 7}}

Jones Polynomial: - q-3/2 + q-1/2 - 4q1/2 + 4q3/2 - 4q5/2 + 4q7/2 - 3q9/2 + 2q11/2 - q13/2

A2 (sl(3)) Invariant: q-6 + 2q-4 + 2q-2 + 4 + q2 - q6 - 2q8 - q12 + q14 + q16 + q20

HOMFLY-PT Polynomial: - a-5z-1 - 2a-5z - a-5z3 + 3a-3z-1 + 6a-3z + 4a-3z3 + a-3z5 - 4a-1z-1 - 5a-1z - 2a-1z3 + 2az-1 + az

Kauffman Polynomial: - a-7z + 3a-7z3 - a-7z5 + a-6 - 3a-6z2 + 6a-6z4 - 2a-6z6 - a-5z-1 + 2a-5z - 4a-5z3 + 6a-5z5 - 2a-5z7 + 3a-4 - 5a-4z2 + a-4z4 + 2a-4z6 - a-4z8 - 3a-3z-1 + 11a-3z - 19a-3z3 + 12a-3z5 - 3a-3z7 + 3a-2 - 2a-2z2 - 6a-2z4 + 4a-2z6 - a-2z8 - 4a-1z-1 + 11a-1z - 13a-1z3 + 5a-1z5 - a-1z7 + 2 - z4 - 2az-1 + 3az - az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14        1
j = 12       1 
j = 10      21 
j = 8     21  
j = 6    22   
j = 4   22    
j = 2  22     
j = 0 14      
j = -2         
j = -41        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 6]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 6]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[9, 14, 10, 15], 
 
>   X[8, 4, 9, 3], X[5, 11, 6, 10], X[13, 5, 14, 20], X[11, 19, 12, 18], 
 
>   X[19, 13, 20, 12], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 5, -3}, {-6, -1, 2, -5, -4, 6, -8, 9, -7, 4, 10, -2, 3, 8, 
 
>    -9, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(3/2)      1                     3/2      5/2      7/2      9/2      11/2
-q       + ------- - 4 Sqrt[q] + 4 q    - 4 q    + 4 q    - 3 q    + 2 q     - 
           Sqrt[q]
 
     13/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6   2    2     2    6      8    12    14    16    20
4 + q   + -- + -- + q  - q  - 2 q  - q   + q   + q   + q
           4    2
          q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 6]][a, z]
Out[8]=   
                                                      3      3      3    5
   1       3      4    2 a   2 z   6 z   5 z         z    4 z    2 z    z
-(----) + ---- - --- + --- - --- + --- - --- + a z - -- + ---- - ---- + --
   5       3     a z    z     5     3     a           5     3     a      3
  a  z    a  z               a     a                 a     a            a
In[9]:=
Kauffman[Link[10, NonAlternating, 6]][a, z]
Out[9]=   
     -6   3    3     1      3      4    2 a   z    2 z   11 z   11 z
2 + a   + -- + -- - ---- - ---- - --- - --- - -- + --- + ---- + ---- + 3 a z - 
           4    2    5      3     a z    z     7    5      3     a
          a    a    a  z   a  z               a    a      a
 
       2      2      2      3      3       3       3                  4    4
    3 z    5 z    2 z    3 z    4 z    19 z    13 z       3    4   6 z    z
>   ---- - ---- - ---- + ---- - ---- - ----- - ----- - a z  - z  + ---- + -- - 
      6      4      2      7      5      3       a                   6     4
     a      a      a      a      a      a                           a     a
 
       4    5      5       5      5      6      6      6      7      7    7
    6 z    z    6 z    12 z    5 z    2 z    2 z    4 z    2 z    3 z    z
>   ---- - -- + ---- + ----- + ---- - ---- + ---- + ---- - ---- - ---- - -- - 
      2     7     5      3      a       6      4      2      5      3    a
     a     a     a      a              a      a      a      a      a
 
     8    8
    z    z
>   -- - --
     4    2
    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1     1      2        4        4  2      6  2      6  3
4 + 2 q  + ----- + - + 2 q  t + 2 q  t + 2 q  t  + 2 q  t  + 2 q  t  + 
            4  2   t
           q  t
 
       8  3    8  4      10  4    10  5    12  5    14  6
>   2 q  t  + q  t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n6
L10n5
L10n5
L10n7
L10n7