© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n3
L10n3
L10n5
L10n5
L10n4
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n4

Visit L10n4's page at Knotilus!

Acknowledgement

L10n4 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X3849 X5,11,6,10 X13,5,14,20 X11,19,12,18 X19,13,20,12 X15,2,16,3

Gauss Code: {{1, 10, -5, -3}, {-6, -1, 2, 5, -4, 6, -8, 9, -7, 4, -10, -2, 3, 8, -9, 7}}

Jones Polynomial: - 2q-9/2 + 2q-7/2 - 4q-5/2 + 5q-3/2 - 5q-1/2 + 4q1/2 - 3q3/2 + 2q5/2 - q7/2

A2 (sl(3)) Invariant: q-18 + q-16 + 3q-14 + 2q-12 + 2q-10 + q-8 - 2q-6 - 2q-2 + 1 + q6 + q10

HOMFLY-PT Polynomial: - a-1z-1 - 4a-1z - 4a-1z3 - a-1z5 + 3az-1 + 9az + 12az3 + 6az5 + az7 - 4a3z-1 - 8a3z - 5a3z3 - a3z5 + 2a5z-1 + a5z

Kauffman Polynomial: - a-3z + 3a-3z3 - a-3z5 + a-2 - 3a-2z2 + 6a-2z4 - 2a-2z6 - a-1z-1 + 3a-1z - 5a-1z3 + 6a-1z5 - 2a-1z7 + 3 - 7z2 + 4z4 + z6 - z8 - 3az-1 + 13az - 25az3 + 16az5 - 4az7 + 3a2 - 7a2z2 + 2a2z6 - a2z8 - 4a3z-1 + 16a3z - 20a3z3 + 9a3z5 - 2a3z7 + 2a4 - 3a4z2 + 2a4z4 - a4z6 - 2a5z-1 + 7a5z - 3a5z3

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8        1
j = 6       1 
j = 4      21 
j = 2     21  
j = 0    32   
j = -2   33    
j = -4  12     
j = -6 13      
j = -811       
j = -102        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 4]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 4]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[9, 14, 10, 15], 
 
>   X[3, 8, 4, 9], X[5, 11, 6, 10], X[13, 5, 14, 20], X[11, 19, 12, 18], 
 
>   X[19, 13, 20, 12], X[15, 2, 16, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 10, -5, -3}, {-6, -1, 2, 5, -4, 6, -8, 9, -7, 4, -10, -2, 3, 8, 
 
>    -9, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2     2      4      5        5                     3/2      5/2    7/2
---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] - 3 q    + 2 q    - q
 9/2    7/2    5/2    3/2   Sqrt[q]
q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    -16    3     2     2     -8   2    2     6    10
1 + q    + q    + --- + --- + --- + q   - -- - -- + q  + q
                   14    12    10          6    2
                  q     q     q           q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 4]][a, z]
Out[8]=   
                  3      5                                    3
   1     3 a   4 a    2 a    4 z              3      5     4 z          3
-(---) + --- - ---- + ---- - --- + 9 a z - 8 a  z + a  z - ---- + 12 a z  - 
  a z     z     z      z      a                             a
 
               5
       3  3   z         5    3  5      7
>   5 a  z  - -- + 6 a z  - a  z  + a z
              a
In[9]:=
Kauffman[Link[10, NonAlternating, 4]][a, z]
Out[9]=   
                                       3      5
     -2      2      4    1    3 a   4 a    2 a    z    3 z                3
3 + a   + 3 a  + 2 a  - --- - --- - ---- - ---- - -- + --- + 13 a z + 16 a  z + 
                        a z    z     z      z      3    a
                                                  a
 
                       2                          3      3
       5        2   3 z       2  2      4  2   3 z    5 z          3
>   7 a  z - 7 z  - ---- - 7 a  z  - 3 a  z  + ---- - ---- - 25 a z  - 
                      2                          3     a
                     a                          a
 
                                   4              5      5
        3  3      5  3      4   6 z       4  4   z    6 z          5
>   20 a  z  - 3 a  z  + 4 z  + ---- + 2 a  z  - -- + ---- + 16 a z  + 
                                  2               3    a
                                 a               a
 
                      6                        7
       3  5    6   2 z       2  6    4  6   2 z         7      3  7    8    2  8
>   9 a  z  + z  - ---- + 2 a  z  - a  z  - ---- - 4 a z  - 2 a  z  - z  - a  z
                     2                       a
                    a
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      2        1       1       1       3       1      2      3
3 + -- + ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 2 t + 
     2    10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    4  3    6  3    8  4
>   2 q  t + q  t  + 2 q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n4
L10n3
L10n3
L10n5
L10n5