© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n2
L10n2
L10n4
L10n4
L10n3
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n3

Visit L10n3's page at Knotilus!

Acknowledgement

L10n3 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X11,19,12,18 X17,5,18,20 X19,13,20,12 X9,16,10,17 X2,14,3,13

Gauss Code: {{1, -10, 5, -3}, {-4, -1, 2, -5, -9, 4, -6, 8, 10, -2, 3, 9, -7, 6, -8, 7}}

Jones Polynomial: q-9/2 - 2q-7/2 + 3q-5/2 - 4q-3/2 + 3q-1/2 - 5q1/2 + 3q3/2 - 2q5/2 + q7/2

A2 (sl(3)) Invariant: - q-14 - q-10 - q-8 + q-6 + q-4 + 4q-2 + 4 + 3q2 + 2q4 - q6 - q10 - q12

HOMFLY-PT Polynomial: a-3z-1 + a-3z - 4a-1z-1 - 5a-1z - 2a-1z3 + 4az-1 + 6az + 4az3 + az5 - a3z-1 - 2a3z - a3z3

Kauffman Polynomial: a-4 - a-4z2 - a-3z-1 + 2a-3z - 2a-3z3 + 4a-2 - 7a-2z2 + 3a-2z4 - a-2z6 - 4a-1z-1 + 9a-1z - 13a-1z3 + 8a-1z5 - 2a-1z7 + 7 - 13z2 + 7z4 + z6 - z8 - 4az-1 + 11az - 19az3 + 16az5 - 4az7 + 4a2 - 11a2z2 + 8a2z4 + a2z6 - a2z8 - a3z-1 + 4a3z - 8a3z3 + 8a3z5 - 2a3z7 + a4 - 4a4z2 + 4a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 8        1
j = 6       1 
j = 4      21 
j = 2     31  
j = 0    24   
j = -2   221   
j = -4  12     
j = -6 12      
j = -8 1       
j = -101        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 3]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 3]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 10, 6, 11], 
 
>   X[8, 4, 9, 3], X[11, 19, 12, 18], X[17, 5, 18, 20], X[19, 13, 20, 12], 
 
>   X[9, 16, 10, 17], X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 5, -3}, {-4, -1, 2, -5, -9, 4, -6, 8, 10, -2, 3, 9, -7, 6, 
 
>    -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    2      3      4        3                     3/2      5/2    7/2
q       - ---- + ---- - ---- + ------- - 5 Sqrt[q] + 3 q    - 2 q    + q
           7/2    5/2    3/2   Sqrt[q]
          q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -14    -10    -8    -6    -4   4       2      4    6    10    12
4 - q    - q    - q   + q   + q   + -- + 3 q  + 2 q  - q  - q   - q
                                     2
                                    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 3]][a, z]
Out[8]=   
                    3                                  3
 1      4    4 a   a    z    5 z              3     2 z         3    3  3      5
---- - --- + --- - -- + -- - --- + 6 a z - 2 a  z - ---- + 4 a z  - a  z  + a z
 3     a z    z    z     3    a                      a
a  z                    a
In[9]:=
Kauffman[Link[10, NonAlternating, 3]][a, z]
Out[9]=   
                                               3
     -4   4       2    4    1      4    4 a   a    2 z   9 z
7 + a   + -- + 4 a  + a  - ---- - --- - --- - -- + --- + --- + 11 a z + 
           2                3     a z    z    z     3     a
          a                a  z                    a
 
                      2      2                           3       3
       3         2   z    7 z        2  2      4  2   2 z    13 z          3
>   4 a  z - 13 z  - -- - ---- - 11 a  z  - 4 a  z  - ---- - ----- - 19 a z  - 
                      4     2                           3      a
                     a     a                           a
 
                        4                          5
       3  3      4   3 z       2  4      4  4   8 z          5      3  5    6
>   8 a  z  + 7 z  + ---- + 8 a  z  + 4 a  z  + ---- + 16 a z  + 8 a  z  + z  - 
                       2                         a
                      a
 
     6                      7
    z     2  6    4  6   2 z         7      3  7    8    2  8
>   -- + a  z  - a  z  - ---- - 4 a z  - 2 a  z  - z  - a  z
     2                    a
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2      2     1        1       1       2       1       2       2     2
4 + q   + 3 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + 
                  10  5    8  4    6  4    6  3    4  3    4  2    2  2   t
                 q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     2      2        4      4  2    6  2    8  3
>   ---- + q  t + 2 q  t + q  t  + q  t  + q  t
     2
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n3
L10n2
L10n2
L10n4
L10n4