© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n44
L10n44
L10n46
L10n46
L10n45
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n45

Visit L10n45's page at Knotilus!

Acknowledgement

L10n45 as Morse Link
DrawMorseLink

PD Presentation: X8192 X18,9,19,10 X6718 X20,14,7,13 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X14,20,15,19 X17,2,18,3

Gauss Code: {{1, 10, -6, 7, -5, -3}, {3, -1, 2, 6, -8, 5, 4, -9, -7, 8, -10, -2, 9, -4}}

Jones Polynomial: - q-7/2 - q-3/2 + q-1/2 - q1/2 + q3/2 - q5/2

A2 (sl(3)) Invariant: q-16 + q-14 + q-12 + q-10 + q-8 + q-6 + q4 + q6 + q8

HOMFLY-PT Polynomial: - a-1z-1 - 3a-1z - a-1z3 + 2az-1 + 6az + 5az3 + az5 - 2a3z-1 - 4a3z - a3z3 + a5z-1

Kauffman Polynomial: - a-1z-1 + 5a-1z - 10a-1z3 + 6a-1z5 - a-1z7 + 5z2 - 10z4 + 6z6 - z8 - 2az-1 + 11az - 20az3 + 12az5 - 2az7 - a2 + 6a2z2 - 10a2z4 + 6a2z6 - a2z8 - 2a3z-1 + 7a3z - 10a3z3 + 6a3z5 - a3z7 + a4z2 - a5z-1 + a5z

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6      1
j = 4       
j = 2    11 
j = 0  11   
j = -2  11   
j = -4111    
j = -61      
j = -81      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 45]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 45]]
Out[4]=   
PD[X[8, 1, 9, 2], X[18, 9, 19, 10], X[6, 7, 1, 8], X[20, 14, 7, 13], 
 
>   X[5, 13, 6, 12], X[3, 10, 4, 11], X[15, 5, 16, 4], X[11, 16, 12, 17], 
 
>   X[14, 20, 15, 19], X[17, 2, 18, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 10, -6, 7, -5, -3}, 
 
>   {3, -1, 2, 6, -8, 5, 4, -9, -7, 8, -10, -2, 9, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    -(3/2)      1                 3/2    5/2
-q       - q       + ------- - Sqrt[q] + q    - q
                     Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -16    -14    -12    -10    -8    -6    4    6    8
q    + q    + q    + q    + q   + q   + q  + q  + q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 45]][a, z]
Out[8]=   
                  3    5                           3
   1     2 a   2 a    a    3 z              3     z         3    3  3      5
-(---) + --- - ---- + -- - --- + 6 a z - 4 a  z - -- + 5 a z  - a  z  + a z
  a z     z     z     z     a                     a
In[9]:=
Kauffman[Link[10, NonAlternating, 45]][a, z]
Out[9]=   
                     3    5
  2    1    2 a   2 a    a    5 z               3      5        2      2  2
-a  - --- - --- - ---- - -- + --- + 11 a z + 7 a  z + a  z + 5 z  + 6 a  z  + 
      a z    z     z     z     a
 
                3                                              5
     4  2   10 z          3       3  3       4       2  4   6 z          5
>   a  z  - ----- - 20 a z  - 10 a  z  - 10 z  - 10 a  z  + ---- + 12 a z  + 
              a                                              a
 
                                7
       3  5      6      2  6   z         7    3  7    8    2  8
>   6 a  z  + 6 z  + 6 a  z  - -- - 2 a z  - a  z  - z  - a  z
                               a
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4    -2     1       1       1      1         t     2  2    2  3    6  4
1 + q   + q   + ----- + ----- + ----- + ---- + t + -- + q  t  + q  t  + q  t
                 8  2    6  2    4  2    4          2
                q  t    q  t    q  t    q  t       q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n45
L10n44
L10n44
L10n46
L10n46