© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n45
L10n45
L10n47
L10n47
L10n46
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n46

Visit L10n46's page at Knotilus!

Acknowledgement

L10n46 as Morse Link
DrawMorseLink

PD Presentation: X8192 X9,19,10,18 X6718 X13,20,14,7 X12,5,13,6 X3,10,4,11 X4,15,5,16 X16,12,17,11 X19,14,20,15 X17,2,18,3

Gauss Code: {{1, 10, -6, -7, 5, -3}, {3, -1, -2, 6, 8, -5, -4, 9, 7, -8, -10, 2, -9, 4}}

Jones Polynomial: - 2q-15/2 + 2q-13/2 - 3q-11/2 + 4q-9/2 - 3q-7/2 + 2q-5/2 - 2q-3/2

A2 (sl(3)) Invariant: q-28 + q-26 + 2q-24 + q-22 + q-18 - q-16 - q-12 + 2q-8 + q-6 + 2q-4

HOMFLY-PT Polynomial: - a3z-1 - 5a3z - 2a3z3 + 2a5z-1 + 5a5z + 4a5z3 + a5z5 - 2a7z-1 - 3a7z - a7z3 + a9z-1

Kauffman Polynomial: - a3z-1 + 6a3z - 3a3z3 - 2a4z2 + 2a4z4 - a4z6 - 2a5z-1 + 10a5z - 11a5z3 + 4a5z5 - a5z7 - a6 - 4a6z2 + 4a6z4 - 2a6z6 - 2a7z-1 + 10a7z - 11a7z3 + 4a7z5 - a7z7 - 2a8z2 + 2a8z4 - a8z6 - a9z-1 + 6a9z - 3a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2      2
j = -4     11
j = -6    21 
j = -8   21  
j = -10  12   
j = -12 12    
j = -1411     
j = -162      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 46]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 46]]
Out[4]=   
PD[X[8, 1, 9, 2], X[9, 19, 10, 18], X[6, 7, 1, 8], X[13, 20, 14, 7], 
 
>   X[12, 5, 13, 6], X[3, 10, 4, 11], X[4, 15, 5, 16], X[16, 12, 17, 11], 
 
>   X[19, 14, 20, 15], X[17, 2, 18, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 10, -6, -7, 5, -3}, 
 
>   {3, -1, -2, 6, 8, -5, -4, 9, 7, -8, -10, 2, -9, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2       2       3      4      3      2      2
----- + ----- - ----- + ---- - ---- + ---- - ----
 15/2    13/2    11/2    9/2    7/2    5/2    3/2
q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -28    -26    2     -22    -18    -16    -12   2     -6   2
q    + q    + --- + q    + q    - q    - q    + -- + q   + --
               24                                8          4
              q                                 q          q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 46]][a, z]
Out[8]=   
   3       5      7    9
  a     2 a    2 a    a       3        5        7        3  3      5  3
-(--) + ---- - ---- + -- - 5 a  z + 5 a  z - 3 a  z - 2 a  z  + 4 a  z  - 
  z      z      z     z
 
     7  3    5  5
>   a  z  + a  z
In[9]:=
Kauffman[Link[10, NonAlternating, 46]][a, z]
Out[9]=   
       3      5      7    9
  6   a    2 a    2 a    a       3         5         7        9        4  2
-a  - -- - ---- - ---- - -- + 6 a  z + 10 a  z + 10 a  z + 6 a  z - 2 a  z  - 
      z     z      z     z
 
       6  2      8  2      3  3       5  3       7  3      9  3      4  4
>   4 a  z  - 2 a  z  - 3 a  z  - 11 a  z  - 11 a  z  - 3 a  z  + 2 a  z  + 
 
       6  4      8  4      5  5      7  5    4  6      6  6    8  6    5  7
>   4 a  z  + 2 a  z  + 4 a  z  + 4 a  z  - a  z  - 2 a  z  - a  z  - a  z  - 
 
     7  7
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      2        1        1        1        2        1        2
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       2    16  6    14  6    14  5    12  5    12  4    10  4    10  3
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2       1       2      1      1
>   ----- + ----- + ----- + ---- + ----
     8  3    8  2    6  2    6      4
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n46
L10n45
L10n45
L10n47
L10n47