© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n43
L10n43
L10n45
L10n45
L10n44
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n44

Visit L10n44's page at Knotilus!

Acknowledgement

L10n44 as Morse Link
DrawMorseLink

PD Presentation: X8192 X9,19,10,18 X6718 X13,20,14,7 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X19,14,20,15 X17,2,18,3

Gauss Code: {{1, 10, -6, 7, -5, -3}, {3, -1, -2, 6, -8, 5, -4, 9, -7, 8, -10, 2, -9, 4}}

Jones Polynomial: q-15/2 - 2q-13/2 + 2q-11/2 - 3q-9/2 + 3q-7/2 - 3q-5/2 + 2q-3/2 - 2q-1/2

A2 (sl(3)) Invariant: - q-24 + q-20 + q-16 + q-10 + q-8 + 2q-6 + q-4 + q-2 + 2

HOMFLY-PT Polynomial: - az-1 - 2az + a3z-1 + a3z + a3z3 + a5z + a5z3 - a7z

Kauffman Polynomial: az-1 - 2az - a2 + a2z2 - a2z4 + a3z-1 - 5a3z3 + 4a3z5 - a3z7 + 3a4z2 - 5a4z4 + 4a4z6 - a4z8 + 5a5z - 15a5z3 + 13a5z5 - 3a5z7 - a6z2 + 3a6z6 - a6z8 + 3a7z - 10a7z3 + 9a7z5 - 2a7z7 - 3a8z2 + 4a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = 0       2
j = -2      11
j = -4     21 
j = -6    22  
j = -8   11   
j = -10  12    
j = -12 11     
j = -14 1      
j = -161       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 44]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 44]]
Out[4]=   
PD[X[8, 1, 9, 2], X[9, 19, 10, 18], X[6, 7, 1, 8], X[13, 20, 14, 7], 
 
>   X[5, 13, 6, 12], X[3, 10, 4, 11], X[15, 5, 16, 4], X[11, 16, 12, 17], 
 
>   X[19, 14, 20, 15], X[17, 2, 18, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 10, -6, 7, -5, -3}, 
 
>   {3, -1, -2, 6, -8, 5, -4, 9, -7, 8, -10, 2, -9, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     2       2      3      3      3      2        2
q        - ----- + ----- - ---- + ---- - ---- + ---- - -------
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    -20    -16    -10    -8   2     -4    -2
2 - q    + q    + q    + q    + q   + -- + q   + q
                                       6
                                      q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 44]][a, z]
Out[8]=   
        3
  a    a             3      5      7      3  3    5  3
-(-) + -- - 2 a z + a  z + a  z - a  z + a  z  + a  z
  z    z
In[9]:=
Kauffman[Link[10, NonAlternating, 44]][a, z]
Out[9]=   
           3
  2   a   a               5        7      2  2      4  2    6  2      8  2
-a  + - + -- - 2 a z + 5 a  z + 3 a  z + a  z  + 3 a  z  - a  z  - 3 a  z  - 
      z   z
 
       3  3       5  3       7  3    2  4      4  4      8  4      3  5
>   5 a  z  - 15 a  z  - 10 a  z  - a  z  - 5 a  z  + 4 a  z  + 4 a  z  + 
 
        5  5      7  5      4  6      6  6    8  6    3  7      5  7
>   13 a  z  + 9 a  z  + 4 a  z  + 3 a  z  - a  z  - a  z  - 3 a  z  - 
 
       7  7    4  8    6  8
>   2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2     1        1        1        1        1        2        1       1
2 + q   + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
           16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
          q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      2       2       2      1      1
>   ----- + ----- + ----- + ---- + ----
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n44
L10n43
L10n43
L10n45
L10n45