© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n42
L10n42
L10n44
L10n44
L10n43
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n43

Visit L10n43's page at Knotilus!

Acknowledgement

L10n43 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,4,11,3 X20,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X16,12,17,11 X17,6,18,1 X19,15,20,14 X13,19,14,18

Gauss Code: {{1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3}}

Jones Polynomial: - 2q-3/2 + 3q-1/2 - 6q1/2 + 6q3/2 - 7q5/2 + 6q7/2 - 4q9/2 + 3q11/2 - q13/2

A2 (sl(3)) Invariant: 2q-6 + 2q-4 + q-2 + 4 + q2 + 2q4 + q6 - q8 - 3q12 - q18 + q20

HOMFLY-PT Polynomial: - a-5z - a-5z3 + a-3z-1 + 4a-3z + 3a-3z3 + a-3z5 - 3a-1z-1 - 6a-1z - 3a-1z3 + 2az-1 + 2az

Kauffman Polynomial: 2a-7z3 - a-7z5 - 4a-6z2 + 8a-6z4 - 3a-6z6 + 2a-5z - 4a-5z3 + 7a-5z5 - 3a-5z7 + a-4 - 9a-4z2 + 12a-4z4 - 3a-4z6 - a-4z8 - a-3z-1 + 7a-3z - 15a-3z3 + 13a-3z5 - 5a-3z7 + 3a-2 - 7a-2z2 + 4a-2z4 - a-2z6 - a-2z8 - 3a-1z-1 + 10a-1z - 12a-1z3 + 5a-1z5 - 2a-1z7 + 3 - 2z2 - z6 - 2az-1 + 5az - 3az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14        1
j = 12       2 
j = 10      21 
j = 8     42  
j = 6    32   
j = 4   34    
j = 2  33     
j = 0 14      
j = -212       
j = -42        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 43]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 43]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[20, 10, 7, 9], X[2, 7, 3, 8], 
 
>   X[4, 15, 5, 16], X[5, 13, 6, 12], X[16, 12, 17, 11], X[17, 6, 18, 1], 
 
>   X[19, 15, 20, 14], X[13, 19, 14, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, -5, -6, 8}, 
 
>   {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2       3                     3/2      5/2      7/2      9/2      11/2    13/2
---- + ------- - 6 Sqrt[q] + 6 q    - 7 q    + 6 q    - 4 q    + 3 q     - q
 3/2   Sqrt[q]
q
In[7]:=
A2Invariant[L][q]
Out[7]=   
    2    2     -2    2      4    6    8      12    18    20
4 + -- + -- + q   + q  + 2 q  + q  - q  - 3 q   - q   + q
     6    4
    q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 43]][a, z]
Out[8]=   
                                             3      3      3    5
 1      3    2 a   z    4 z   6 z           z    3 z    3 z    z
---- - --- + --- - -- + --- - --- + 2 a z - -- + ---- - ---- + --
 3     a z    z     5    3     a             5     3     a      3
a  z               a    a                   a     a            a
In[9]:=
Kauffman[Link[10, NonAlternating, 43]][a, z]
Out[9]=   
                                                                       2
     -4   3     1      3    2 a   2 z   7 z   10 z              2   4 z
3 + a   + -- - ---- - --- - --- + --- + --- + ---- + 5 a z - 2 z  - ---- - 
           2    3     a z    z     5     3     a                      6
          a    a  z               a     a                            a
 
       2      2      3      3       3       3               4       4      4
    9 z    7 z    2 z    4 z    15 z    12 z         3   8 z    12 z    4 z
>   ---- - ---- + ---- - ---- - ----- - ----- - 3 a z  + ---- + ----- + ---- - 
      4      2      7      5      3       a                6      4       2
     a      a      a      a      a                        a      a       a
 
     5      5       5      5           6      6    6      7      7      7
    z    7 z    13 z    5 z     6   3 z    3 z    z    3 z    5 z    2 z
>   -- + ---- + ----- + ---- - z  - ---- - ---- - -- - ---- - ---- - ---- - 
     7     5      3      a            6      4     2     5      3     a
    a     a      a                   a      a     a     a      a
 
     8    8
    z    z
>   -- - --
     4    2
    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     2       1     1    2        2        4        4  2      6  2
4 + 3 q  + ----- + ----- + - + ---- + 3 q  t + 3 q  t + 4 q  t  + 3 q  t  + 
            4  2    2  2   t    2
           q  t    q  t        q  t
 
       6  3      8  3      8  4      10  4    10  5      12  5    14  6
>   2 q  t  + 4 q  t  + 2 q  t  + 2 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n43
L10n42
L10n42
L10n44
L10n44