© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n25
L9n25
L9n27
L9n27
L9n26
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L9n26

Visit L9n26's page at Knotilus!

Acknowledgement

L9n26 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X11,17,12,16 X7,14,8,15 X13,8,14,9 X15,13,16,18 X17,5,18,12 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {-5, 4, -6, 3, -7, 6}, {8, -1, -4, 5, 9, -2, -3, 7}}

Jones Polynomial: q-6 - q-5 + 3q-4 - 2q-3 + 3q-2 - 2q-1 + 3 - q

A2 (sl(3)) Invariant: q-20 + 2q-18 + 2q-16 + 4q-14 + 4q-12 + 4q-10 + 4q-8 + 2q-6 + 2q-4 + q-2 + 1 + q2 - q4

HOMFLY-PT Polynomial: - z2 + a2z-2 + 3a2 + 3a2z2 + a2z4 - 2a4z-2 - 4a4 - 2a4z2 + a6z-2 + a6

Kauffman Polynomial: a-1z - 1 + 3z2 + 3az - 5az3 + 2az5 + a2z-2 - 7a2 + 15a2z2 - 12a2z4 + 3a2z6 - 2a3z-1 + 7a3z - 6a3z3 - a3z5 + a3z7 + 2a4z-2 - 10a4 + 20a4z2 - 17a4z4 + 4a4z6 - 2a5z-1 + 5a5z - a5z3 - 3a5z5 + a5z7 + a6z-2 - 5a6 + 8a6z2 - 5a6z4 + a6z6

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 3       1
j = 1      2 
j = -1     23 
j = -3    111 
j = -5   12   
j = -7  21    
j = -9 13     
j = -11        
j = -131       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 26]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 26]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 17, 12, 16], X[7, 14, 8, 15], 
 
>   X[13, 8, 14, 9], X[15, 13, 16, 18], X[17, 5, 18, 12], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {-5, 4, -6, 3, -7, 6}, {8, -1, -4, 5, 9, -2, -3, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
     -6    -5   3    2    3    2
3 + q   - q   + -- - -- + -- - - - q
                 4    3    2   q
                q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -20    2     2     4     4     4    4    2    2     -2    2    4
1 + q    + --- + --- + --- + --- + --- + -- + -- + -- + q   + q  - q
            18    16    14    12    10    8    6    4
           q     q     q     q     q     q    q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 26]][a, z]
Out[8]=   
                    2      4    6
   2      4    6   a    2 a    a     2      2  2      4  2    2  4
3 a  - 4 a  + a  + -- - ---- + -- - z  + 3 a  z  - 2 a  z  + a  z
                    2     2     2
                   z     z     z
In[9]:=
Kauffman[Link[9, NonAlternating, 26]][a, z]
Out[9]=   
                            2      4    6      3      5
        2       4      6   a    2 a    a    2 a    2 a    z              3
-1 - 7 a  - 10 a  - 5 a  + -- + ---- + -- - ---- - ---- + - + 3 a z + 7 a  z + 
                            2     2     2    z      z     a
                           z     z     z
 
       5        2       2  2       4  2      6  2        3      3  3    5  3
>   5 a  z + 3 z  + 15 a  z  + 20 a  z  + 8 a  z  - 5 a z  - 6 a  z  - a  z  - 
 
        2  4       4  4      6  4        5    3  5      5  5      2  6
>   12 a  z  - 17 a  z  - 5 a  z  + 2 a z  - a  z  - 3 a  z  + 3 a  z  + 
 
       4  6    6  6    3  7    5  7
>   4 a  z  + a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -3   3           1        1       3       2       1       1       2
q   + - + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
      q          13  6    9  5    9  4    7  4    7  3    5  3    5  2
                q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      1      1      2     3
>   ----- + ---- + --- + q  t
     3  2    3     q t
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n26
L9n25
L9n25
L9n27
L9n27