© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n24
L9n24
L9n26
L9n26
L9n25
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L9n25

Visit L9n25's page at Knotilus!

Acknowledgement

L9n25 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X11,16,12,17 X9,11,10,18 X17,5,18,10 X4,15,1,16

Gauss Code: {{1, -4, 3, -9}, {-2, -1, 5, -3, -7, 8}, {-6, 2, 4, -5, 9, 6, -8, 7}}

Jones Polynomial: - q-5 + 2q-4 - 2q-3 + 3q-2 - 2q-1 + 4 - q + q2

A2 (sl(3)) Invariant: - q-16 + 2q-8 + 2q-6 + 4q-4 + 5q-2 + 5 + 5q2 + 2q4 + 2q6 + q8

HOMFLY-PT Polynomial: a-2z-2 + a-2 - 2z-2 - 3 - 2z2 + a2z-2 + 3a2 + 3a2z2 + a2z4 - a4 - a4z2

Kauffman Polynomial: a-2z-2 - 2a-2 + a-2z2 - 2a-1z-1 + a-1z + a-1z3 + 2z-2 - 5 + 9z2 - 4z4 + z6 - 2az-1 + 3az + 2az3 - 3az5 + az7 + a2z-2 - 6a2 + 13a2z2 - 11a2z4 + 3a2z6 + 3a3z - 2a3z3 - 2a3z5 + a3z7 - 2a4 + 5a4z2 - 7a4z4 + 2a4z6 + a5z - 3a5z3 + a5z5

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 5       1
j = 3        
j = 1     41 
j = -1    24  
j = -3   111  
j = -5  12    
j = -7 11     
j = -9 1      
j = -111       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 25]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 25]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[8, 4, 9, 3], X[2, 14, 3, 13], 
 
>   X[14, 7, 15, 8], X[11, 16, 12, 17], X[9, 11, 10, 18], X[17, 5, 18, 10], 
 
>   X[4, 15, 1, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -9}, {-2, -1, 5, -3, -7, 8}, {-6, 2, 4, -5, 9, 6, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
     -5   2    2    3    2        2
4 - q   + -- - -- + -- - - - q + q
           4    3    2   q
          q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16   2    2    4    5       2      4      6    8
5 - q    + -- + -- + -- + -- + 5 q  + 2 q  + 2 q  + q
            8    6    4    2
           q    q    q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 25]][a, z]
Out[8]=   
                                     2
      -2      2    4   2      1     a       2      2  2    4  2    2  4
-3 + a   + 3 a  - a  - -- + ----- + -- - 2 z  + 3 a  z  - a  z  + a  z
                        2    2  2    2
                       z    a  z    z
In[9]:=
Kauffman[Link[9, NonAlternating, 25]][a, z]
Out[9]=   
                                      2
     2       2      4   2      1     a     2    2 a   z              3
-5 - -- - 6 a  - 2 a  + -- + ----- + -- - --- - --- + - + 3 a z + 3 a  z + 
      2                  2    2  2    2   a z    z    a
     a                  z    a  z    z
 
                   2                         3
     5        2   z        2  2      4  2   z         3      3  3      5  3
>   a  z + 9 z  + -- + 13 a  z  + 5 a  z  + -- + 2 a z  - 2 a  z  - 3 a  z  - 
                   2                        a
                  a
 
       4       2  4      4  4        5      3  5    5  5    6      2  6
>   4 z  - 11 a  z  - 7 a  z  - 3 a z  - 2 a  z  + a  z  + z  + 3 a  z  + 
 
       4  6      7    3  7
>   2 a  z  + a z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -3   4           1        1       1       1       1       2       1      1
q   + - + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
      q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
                q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     2           5  2
>   --- + q t + q  t
    q t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n25
L9n24
L9n24
L9n26
L9n26