© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n18
L9n18
L9n20
L9n20
L9n19
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n19

Visit L9n19's page at Knotilus!

Acknowledgement

L9n19 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X3,12,4,13 X18,5,9,6 X6,9,7,10 X16,12,17,11 X7,14,8,15 X13,4,14,5 X15,8,16,1 X2,17,3,18

Gauss Code: {{1, -9, -2, 7, 3, -4, -6, 8}, {4, -1, 5, 2, -7, 6, -8, -5, 9, -3}}

Jones Polynomial: - q-19/2 - q-5/2

A2 (sl(3)) Invariant: q-30 + q-28 + 2q-26 + 2q-24 + q-22 - q-18 + q-12 + q-10 + q-8

HOMFLY-PT Polynomial: - 5a5z - 5a5z3 - a5z5 - a7z-1 + a9z-1 + a9z

Kauffman Polynomial: - 5a5z + 5a5z3 - a5z5 - a7z-1 + a7z + a8 - a9z-1 + a9z - 5a11z + 5a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4        1
j = -6        1
j = -8     11  
j = -10         
j = -12   121   
j = -14         
j = -16  11     
j = -181        
j = -201        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 19]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 19]]
Out[4]=   
PD[X[10, 1, 11, 2], X[3, 12, 4, 13], X[18, 5, 9, 6], X[6, 9, 7, 10], 
 
>   X[16, 12, 17, 11], X[7, 14, 8, 15], X[13, 4, 14, 5], X[15, 8, 16, 1], 
 
>   X[2, 17, 3, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, -2, 7, 3, -4, -6, 8}, {4, -1, 5, 2, -7, 6, -8, -5, 9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)    -(5/2)
-q        - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -30    -28    2     2     -22    -18    -12    -10    -8
q    + q    + --- + --- + q    - q    + q    + q    + q
               26    24
              q     q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 19]][a, z]
Out[8]=   
   7     9
  a     a       5      9        5  3    5  5
-(--) + -- - 5 a  z + a  z - 5 a  z  - a  z
  z     z
In[9]:=
Kauffman[Link[9, NonAlternating, 19]][a, z]
Out[9]=   
      7    9
 8   a    a       5      7      9        11        5  3      11  3    5  5
a  - -- - -- - 5 a  z + a  z + a  z - 5 a   z + 5 a  z  + 5 a   z  - a  z  - 
     z    z
 
     11  5
>   a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     1        1        1        1        1        2        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             20  8    18  8    16  6    16  5    12  5    12  4    12  3
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1       1
>   ----- + -----
     8  3    8  2
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n19
L9n18
L9n18
L9n20
L9n20