© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n17
L9n17
L9n19
L9n19
L9n18
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n18

Visit L9n18's page at Knotilus!

Acknowledgement

L9n18 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X18,5,9,6 X7,14,8,15 X13,16,14,17 X15,8,16,1 X6,9,7,10 X4,17,5,18

Gauss Code: {{1, -2, 3, -9, 4, -8, -5, 7}, {8, -1, 2, -3, -6, 5, -7, 6, 9, -4}}

Jones Polynomial: - q-21/2 + q-15/2 - q-11/2 - q-7/2

A2 (sl(3)) Invariant: - q-36 + q-34 + 2q-32 + 2q-30 + q-28 - q-26 - q-24 - q-22 + q-20 + 2q-18 + 2q-16 + q-14 + q-12

HOMFLY-PT Polynomial: - a7z-1 - 11a7z - 15a7z3 - 7a7z5 - a7z7 + a9z-1 + 8a9z + 6a9z3 + a9z5 - a11z

Kauffman Polynomial: - a7z-1 + 11a7z - 15a7z3 + 7a7z5 - a7z7 + a8 - 8a8z2 + 6a8z4 - a8z6 - a9z-1 + 9a9z - 14a9z3 + 7a9z5 - a9z7 - 8a10z2 + 6a10z4 - a10z6 + a11z + 3a13z - a13z3

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -6        1
j = -8        1
j = -10      1  
j = -12    1    
j = -14   111   
j = -16   1     
j = -18  11     
j = -201        
j = -221        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 18]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 18]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[18, 5, 9, 6], 
 
>   X[7, 14, 8, 15], X[13, 16, 14, 17], X[15, 8, 16, 1], X[6, 9, 7, 10], 
 
>   X[4, 17, 5, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -9, 4, -8, -5, 7}, {8, -1, 2, -3, -6, 5, -7, 6, 9, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(21/2)    -(15/2)    -(11/2)    -(7/2)
-q        + q        - q        - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -36    -34    2     2     -28    -26    -24    -22    -20    2     2
-q    + q    + --- + --- + q    - q    - q    - q    + q    + --- + --- + 
                32    30                                       18    16
               q     q                                        q     q
 
     -14    -12
>   q    + q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 18]][a, z]
Out[8]=   
   7     9
  a     a        7        9      11         7  3      9  3      7  5    9  5
-(--) + -- - 11 a  z + 8 a  z - a   z - 15 a  z  + 6 a  z  - 7 a  z  + a  z  - 
  z     z
 
     7  7
>   a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 18]][a, z]
Out[9]=   
      7    9
 8   a    a        7        9      11        13        8  2      10  2
a  - -- - -- + 11 a  z + 9 a  z + a   z + 3 a   z - 8 a  z  - 8 a   z  - 
     z    z
 
        7  3       9  3    13  3      8  4      10  4      7  5      9  5
>   15 a  z  - 14 a  z  - a   z  + 6 a  z  + 6 a   z  + 7 a  z  + 7 a  z  - 
 
     8  6    10  6    7  7    9  7
>   a  z  - a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -8    -6     1        1        1        1        1        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             22  8    20  8    18  6    18  5    16  5    14  5    14  4
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        1        1
>   ------ + ------ + ------
     12  4    14  3    10  2
    q   t    q   t    q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n18
L9n17
L9n17
L9n19
L9n19