© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a26
L9a26
L9a28
L9a28
L9a27
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a27

Visit L9a27's page at Knotilus!

Acknowledgement

L9a27 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,4,11,3 X18,10,7,9 X2738 X16,13,17,14 X6,12,1,11 X4,16,5,15 X14,6,15,5 X12,17,13,18

Gauss Code: {{1, -4, 2, -7, 8, -6}, {4, -1, 3, -2, 6, -9, 5, -8, 7, -5, 9, -3}}

Jones Polynomial: - q-7/2 + 3q-5/2 - 5q-3/2 + 7q-1/2 - 9q1/2 + 8q3/2 - 8q5/2 + 5q7/2 - 3q9/2 + q11/2

A2 (sl(3)) Invariant: q-12 - 2q-8 + q-6 - q-4 + 3 + 3q4 + 2q8 + 2q10 - q12 + 2q14 - q18

HOMFLY-PT Polynomial: a-5z - a-3z-1 - 2a-3z - 2a-3z3 + a-1z-1 + 3a-1z + 2a-1z3 + a-1z5 - 2az - 2az3 + a3z

Kauffman Polynomial: a-6z2 - a-6z4 - 2a-5z + 4a-5z3 - 3a-5z5 - a-4z2 + 4a-4z4 - 4a-4z6 + a-3z-1 - 4a-3z + 6a-3z3 - a-3z5 - 3a-3z7 - a-2 - 5a-2z2 + 13a-2z4 - 7a-2z6 - a-2z8 + a-1z-1 - 2a-1z + a-1z3 + 7a-1z5 - 6a-1z7 - 7z2 + 15z4 - 6z6 - z8 - az + az3 + 4az5 - 3az7 - 4a2z2 + 7a2z4 - 3a2z6 - a3z + 2a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         1
j = 10        2 
j = 8       31 
j = 6      52  
j = 4     44   
j = 2    54    
j = 0   35     
j = -2  24      
j = -4 13       
j = -6 2        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 27]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 27]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[18, 10, 7, 9], X[2, 7, 3, 8], 
 
>   X[16, 13, 17, 14], X[6, 12, 1, 11], X[4, 16, 5, 15], X[14, 6, 15, 5], 
 
>   X[12, 17, 13, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, -7, 8, -6}, {4, -1, 3, -2, 6, -9, 5, -8, 7, -5, 9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    3      5        7                     3/2      5/2      7/2
-q       + ---- - ---- + ------- - 9 Sqrt[q] + 8 q    - 8 q    + 5 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2    11/2
>   3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12   2     -6    -4      4      8      10    12      14    18
3 + q    - -- + q   - q   + 3 q  + 2 q  + 2 q   - q   + 2 q   - q
            8
           q
In[8]:=
HOMFLYPT[Link[9, Alternating, 27]][a, z]
Out[8]=   
                                                   3      3             5
   1       1    z    2 z   3 z            3     2 z    2 z         3   z
-(----) + --- + -- - --- + --- - 2 a z + a  z - ---- + ---- - 2 a z  + --
   3      a z    5    3     a                     3     a              a
  a  z          a    a                           a
In[9]:=
Kauffman[Link[9, Alternating, 27]][a, z]
Out[9]=   
                                                           2    2      2
  -2    1      1    2 z   4 z   2 z          3        2   z    z    5 z
-a   + ---- + --- - --- - --- - --- - a z - a  z - 7 z  + -- - -- - ---- - 
        3     a z    5     3     a                         6    4     2
       a  z         a     a                               a    a     a
 
                 3      3    3                             4      4       4
       2  2   4 z    6 z    z       3      3  3       4   z    4 z    13 z
>   4 a  z  + ---- + ---- + -- + a z  + 2 a  z  + 15 z  - -- + ---- + ----- + 
                5      3    a                              6     4      2
               a      a                                   a     a      a
 
                 5    5      5                              6      6
       2  4   3 z    z    7 z         5    3  5      6   4 z    7 z
>   7 a  z  - ---- - -- + ---- + 4 a z  - a  z  - 6 z  - ---- - ---- - 
                5     3    a                               4      2
               a     a                                    a      a
 
                 7      7                  8
       2  6   3 z    6 z         7    8   z
>   3 a  z  - ---- - ---- - 3 a z  - z  - --
                3     a                    2
               a                          a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       2       1       3       2     3    4        2        4
5 + 5 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 4 q  t + 4 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3    8  4      10  4    12  5
>   4 q  t  + 5 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a27
L9a26
L9a26
L9a28
L9a28