© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a25
L9a25
L9a27
L9a27
L9a26
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a26

Visit L9a26's page at Knotilus!

Acknowledgement

L9a26 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,4,11,3 X18,10,7,9 X14,6,15,5 X16,14,17,13 X12,18,13,17 X2738 X4,12,5,11 X6,16,1,15

Gauss Code: {{1, -7, 2, -8, 4, -9}, {7, -1, 3, -2, 8, -6, 5, -4, 9, -5, 6, -3}}

Jones Polynomial: - q-1/2 + 2q1/2 - 5q3/2 + 6q5/2 - 8q7/2 + 8q9/2 - 7q11/2 + 5q13/2 - 3q15/2 + q17/2

A2 (sl(3)) Invariant: q-2 + q2 + 3q4 + 3q8 + q14 - q16 + 2q18 - q20 + q24 - q26

HOMFLY-PT Polynomial: a-7z + a-7z3 - a-5z - 2a-5z3 - a-5z5 - a-3z-1 - a-3z - 2a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: a-10z2 - a-10z4 - a-9z + 4a-9z3 - 3a-9z5 - 2a-8z2 + 5a-8z4 - 4a-8z6 - a-7z + 2a-7z3 + a-7z5 - 3a-7z7 - 4a-6z2 + 9a-6z4 - 5a-6z6 - a-6z8 - a-5z + 6a-5z5 - 5a-5z7 - 2a-4z2 + 7a-4z4 - 3a-4z6 - a-4z8 + a-3z-1 - 4a-3z + 5a-3z3 + a-3z5 - 2a-3z7 - a-2 - a-2z2 + 4a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18         1
j = 16        2 
j = 14       31 
j = 12      42  
j = 10     43   
j = 8    44    
j = 6   35     
j = 4  23      
j = 2 14       
j = 0 1        
j = -21         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 26]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 26]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[18, 10, 7, 9], X[14, 6, 15, 5], 
 
>   X[16, 14, 17, 13], X[12, 18, 13, 17], X[2, 7, 3, 8], X[4, 12, 5, 11], 
 
>   X[6, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 2, -8, 4, -9}, {7, -1, 3, -2, 8, -6, 5, -4, 9, -5, 6, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2      7/2      9/2      11/2
-(-------) + 2 Sqrt[q] - 5 q    + 6 q    - 8 q    + 8 q    - 7 q     + 
  Sqrt[q]
 
       13/2      15/2    17/2
>   5 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4      8    14    16      18    20    24    26
q   + q  + 3 q  + 3 q  + q   - q   + 2 q   - q   + q   - q
In[8]:=
HOMFLYPT[Link[9, Alternating, 26]][a, z]
Out[8]=   
                                      3      3      3    3    5    5
   1       1    z    z    z    2 z   z    2 z    2 z    z    z    z
-(----) + --- + -- - -- - -- + --- + -- - ---- - ---- + -- - -- - --
   3      a z    7    5    3    a     7     5      3    a     5    3
  a  z          a    a    a          a     a      a          a    a
In[9]:=
Kauffman[Link[9, Alternating, 26]][a, z]
Out[9]=   
                                                2       2      2      2    2
  -2    1      1    z    z    z    4 z   3 z   z     2 z    4 z    2 z    z
-a   + ---- + --- - -- - -- - -- - --- - --- + --- - ---- - ---- - ---- - -- + 
        3     a z    9    7    5    3     a     10     8      6      4     2
       a  z         a    a    a    a           a      a      a      a     a
 
       3      3      3      3    4       4      4      4      4      5    5
    4 z    2 z    5 z    3 z    z     5 z    9 z    7 z    4 z    3 z    z
>   ---- + ---- + ---- + ---- - --- + ---- + ---- + ---- + ---- - ---- + -- + 
      9      7      3     a      10     8      6      4      2      9     7
     a      a      a            a      a      a      a      a      a     a
 
       5    5    5      6      6      6      6      7      7      7    8    8
    6 z    z    z    4 z    5 z    3 z    2 z    3 z    5 z    2 z    z    z
>   ---- + -- - -- - ---- - ---- - ---- - ---- - ---- - ---- - ---- - -- - --
      5     3   a      8      6      4      2      7      5      3     6    4
     a     a          a      a      a      a      a      a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
4 q  + 2 q  + ----- + - + -- + 3 q  t + 3 q  t + 5 q  t  + 4 q  t  + 4 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5    14  6      16  6
>   4 q   t  + 3 q   t  + 4 q   t  + 2 q   t  + 3 q   t  + q   t  + 2 q   t  + 
 
     18  7
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a26
L9a25
L9a25
L9a27
L9a27