© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a20
L9a20
L9a22
L9a22
L9a21
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a21

Visit L9a21's page at Knotilus!

Acknowledgement

L9a21 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X14,8,15,7 X18,14,7,13 X6,17,1,18 X16,11,17,12 X12,6,13,5 X4,16,5,15

Gauss Code: {{1, -2, 3, -9, 8, -6}, {4, -1, 2, -3, 7, -8, 5, -4, 9, -7, 6, -5}}

Jones Polynomial: q-11/2 - 3q-9/2 + 5q-7/2 - 8q-5/2 + 8q-3/2 - 9q-1/2 + 7q1/2 - 5q3/2 + 3q5/2 - q7/2

A2 (sl(3)) Invariant: - q-16 + q-14 - q-12 + 2q-10 + 3q-8 + q-6 + 4q-4 - q-2 + 2 - q2 - q4 + q6 - q8 + q10

HOMFLY-PT Polynomial: - 2a-1z - 3a-1z3 - a-1z5 - az-1 + 3az + 8az3 + 5az5 + az7 + a3z-1 - 2a3z - 3a3z3 - a3z5

Kauffman Polynomial: 2a-3z3 - a-3z5 - 3a-2z2 + 7a-2z4 - 3a-2z6 + 3a-1z - 8a-1z3 + 10a-1z5 - 4a-1z7 - 4z2 + 6z4 - 2z8 + az-1 + 4az - 17az3 + 19az5 - 8az7 - a2 - 2a2z2 + 4a2z4 - a2z6 - 2a2z8 + a3z-1 - 3a3z3 + 5a3z5 - 4a3z7 + 4a4z4 - 4a4z6 - a5z + 4a5z3 - 3a5z5 + a6z2 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8         1
j = 6        2 
j = 4       31 
j = 2      42  
j = 0     53   
j = -2    45    
j = -4   44     
j = -6  25      
j = -8 13       
j = -10 2        
j = -121         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 21]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 21]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[14, 8, 15, 7], 
 
>   X[18, 14, 7, 13], X[6, 17, 1, 18], X[16, 11, 17, 12], X[12, 6, 13, 5], 
 
>   X[4, 16, 5, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -9, 8, -6}, {4, -1, 2, -3, 7, -8, 5, -4, 9, -7, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    3      5      8      8        9                     3/2      5/2
q        - ---- + ---- - ---- + ---- - ------- + 7 Sqrt[q] - 5 q    + 3 q    - 
            9/2    7/2    5/2    3/2   Sqrt[q]
           q      q      q      q
 
     7/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    -14    -12    2    3     -6   4     -2    2    4    6    8    10
2 - q    + q    - q    + --- + -- + q   + -- - q   - q  - q  + q  - q  + q
                          10    8          4
                         q     q          q
In[8]:=
HOMFLYPT[Link[9, Alternating, 21]][a, z]
Out[8]=   
        3                             3                       5
  a    a    2 z              3     3 z         3      3  3   z         5
-(-) + -- - --- + 3 a z - 2 a  z - ---- + 8 a z  - 3 a  z  - -- + 5 a z  - 
  z    z     a                      a                        a
 
     3  5      7
>   a  z  + a z
In[9]:=
Kauffman[Link[9, Alternating, 21]][a, z]
Out[9]=   
           3                                  2                        3
  2   a   a    3 z            5        2   3 z       2  2    6  2   2 z
-a  + - + -- + --- + 4 a z - a  z - 4 z  - ---- - 2 a  z  + a  z  + ---- - 
      z   z     a                            2                        3
                                            a                        a
 
       3                                           4
    8 z          3      3  3      5  3      4   7 z       2  4      4  4
>   ---- - 17 a z  - 3 a  z  + 4 a  z  + 6 z  + ---- + 4 a  z  + 4 a  z  - 
     a                                            2
                                                 a
 
             5       5                                    6
     6  4   z    10 z          5      3  5      5  5   3 z     2  6      4  6
>   a  z  - -- + ----- + 19 a z  + 5 a  z  - 3 a  z  - ---- - a  z  - 4 a  z  - 
             3     a                                     2
            a                                           a
 
       7
    4 z         7      3  7      8      2  8
>   ---- - 8 a z  - 4 a  z  - 2 z  - 2 a  z
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
    5      1        2        1       3       2       5       4      4
5 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     2    12  5    10  4    8  4    8  3    6  3    6  2    4  2    4
    q    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     4              2        2  2      4  2    4  3      6  3    8  4
>   ---- + 3 t + 4 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + q  t
     2
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a21
L9a20
L9a20
L9a22
L9a22