© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a19
L9a19
L9a21
L9a21
L9a20
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a20

Visit L9a20's page at Knotilus!

Acknowledgement

L9a20 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,11,17,12 X10,4,11,3 X2,15,3,16 X12,5,13,6 X6718 X14,10,15,9 X18,14,7,13 X4,18,5,17

Gauss Code: {{1, -4, 3, -9, 5, -6}, {6, -1, 7, -3, 2, -5, 8, -7, 4, -2, 9, -8}}

Jones Polynomial: q-11/2 - 4q-9/2 + 7q-7/2 - 10q-5/2 + 11q-3/2 - 12q-1/2 + 9q1/2 - 7q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-16 + 2q-14 - q-12 + 2q-10 + 2q-8 - q-6 + 4q-4 - q-2 + 4 - q4 + q6 - 2q8 + q10

HOMFLY-PT Polynomial: - 2a-1z3 - a-1z5 - az-1 - az + 4az3 + 4az5 + az7 + a3z-1 - 2a3z3 - a3z5

Kauffman Polynomial: a-3z3 - a-3z5 - 2a-2z2 + 7a-2z4 - 4a-2z6 - 6a-1z3 + 12a-1z5 - 6a-1z7 - 6z2 + 14z4 - 3z6 - 3z8 + az-1 - az - 12az3 + 25az5 - 13az7 - a2 - 6a2z2 + 16a2z4 - 6a2z6 - 3a2z8 + a3z-1 - a3z - 2a3z3 + 8a3z5 - 7a3z7 - 2a4z2 + 8a4z4 - 7a4z6 + 3a5z3 - 4a5z5 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8         1
j = 6        3 
j = 4       41 
j = 2      53  
j = 0     74   
j = -2    56    
j = -4   56     
j = -6  36      
j = -8 14       
j = -10 3        
j = -121         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 20]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 20]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 11, 17, 12], X[10, 4, 11, 3], X[2, 15, 3, 16], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[14, 10, 15, 9], X[18, 14, 7, 13], 
 
>   X[4, 18, 5, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -9, 5, -6}, {6, -1, 7, -3, 2, -5, 8, -7, 4, -2, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    4      7      10     11      12                     3/2      5/2
q        - ---- + ---- - ---- + ---- - ------- + 9 Sqrt[q] - 7 q    + 4 q    - 
            9/2    7/2    5/2    3/2   Sqrt[q]
           q      q      q      q
 
     7/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    2     -12    2    2     -6   4     -2    4    6      8    10
4 - q    + --- - q    + --- + -- - q   + -- - q   - q  + q  - 2 q  + q
            14           10    8          4
           q            q     q          q
In[8]:=
HOMFLYPT[Link[9, Alternating, 20]][a, z]
Out[8]=   
        3            3                       5
  a    a          2 z         3      3  3   z         5    3  5      7
-(-) + -- - a z - ---- + 4 a z  - 2 a  z  - -- + 4 a z  - a  z  + a z
  z    z           a                        a
In[9]:=
Kauffman[Link[9, Alternating, 20]][a, z]
Out[9]=   
           3                          2                        3      3
  2   a   a           3        2   2 z       2  2      4  2   z    6 z
-a  + - + -- - a z - a  z - 6 z  - ---- - 6 a  z  - 2 a  z  + -- - ---- - 
      z   z                          2                         3    a
                                    a                         a
 
                                             4
          3      3  3      5  3       4   7 z        2  4      4  4    6  4
>   12 a z  - 2 a  z  + 3 a  z  + 14 z  + ---- + 16 a  z  + 8 a  z  - a  z  - 
                                            2
                                           a
 
     5       5                                           6
    z    12 z          5      3  5      5  5      6   4 z       2  6
>   -- + ----- + 25 a z  + 8 a  z  - 4 a  z  - 3 z  - ---- - 6 a  z  - 
     3     a                                            2
    a                                                  a
 
                 7
       4  6   6 z          7      3  7      8      2  8
>   7 a  z  - ---- - 13 a z  - 7 a  z  - 3 z  - 3 a  z
               a
In[10]:=
Kh[L][q, t]
Out[10]=   
    6      1        3        1       4       3       6       5      6
7 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     2    12  5    10  4    8  4    8  3    6  3    6  2    4  2    4
    q    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     5              2        2  2      4  2    4  3      6  3    8  4
>   ---- + 4 t + 5 q  t + 3 q  t  + 4 q  t  + q  t  + 3 q  t  + q  t
     2
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a20
L9a19
L9a19
L9a21
L9a21