© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a14
L8a14
L8a16
L8a16
L8a15
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L8a15

Visit L8a15's page at Knotilus!

Acknowledgement

L8a15 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X16,12,9,11 X12,16,13,15 X2536 X4,9,1,10

Gauss Code: {{1, -7, 2, -8}, {7, -1, 3, -4}, {8, -2, 5, -6, 4, -3, 6, -5}}

Jones Polynomial: q-7 - q-6 + 4q-5 - 4q-4 + 6q-3 - 4q-2 + 4q-1 - 3 + q

A2 (sl(3)) Invariant: q-24 + 3q-22 + 3q-20 + 4q-18 + 6q-16 + 3q-14 + 3q-12 + 2q-10 + q-8 + 2q-6 - q-4 + q-2 - 1 - q2 + q4

HOMFLY-PT Polynomial: z2 - a2z2 - a2z4 + a4z-2 + 3a4 + 3a4z2 - 2a6z-2 - 3a6 + a8z-2

Kauffman Polynomial: - z2 + z4 - 5az3 + 3az5 + 2a2z2 - 5a2z4 + 3a2z6 - 3a3z3 + 2a3z5 + a3z7 - a4z-2 + 3a4 - 5a4z4 + 4a4z6 + 2a5z-1 - 3a5z + 2a5z3 + a5z7 - 2a6z-2 + 5a6 - 6a6z2 + 2a6z4 + a6z6 + 2a7z-1 - 3a7z + a7z5 - a8z-2 + 3a8 - 3a8z2 + a8z4

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3        1
j = 1       2 
j = -1      21 
j = -3     33  
j = -5    31   
j = -7   13    
j = -9  33     
j = -11 14      
j = -13         
j = -151        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 15]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 15]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14], 
 
>   X[16, 12, 9, 11], X[12, 16, 13, 15], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 2, -8}, {7, -1, 3, -4}, {8, -2, 5, -6, 4, -3, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
      -7    -6   4    4    6    4    4
-3 + q   - q   + -- - -- + -- - -- + - + q
                  5    4    3    2   q
                 q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -24    3     3     4     6     3     3     2     -8   2     -4    -2
-1 + q    + --- + --- + --- + --- + --- + --- + --- + q   + -- - q   + q   - 
             22    20    18    16    14    12    10          6
            q     q     q     q     q     q     q           q
 
     2    4
>   q  + q
In[8]:=
HOMFLYPT[Link[8, Alternating, 15]][a, z]
Out[8]=   
               4      6    8
   4      6   a    2 a    a     2    2  2      4  2    2  4
3 a  - 3 a  + -- - ---- + -- + z  - a  z  + 3 a  z  - a  z
               2     2     2
              z     z     z
In[9]:=
Kauffman[Link[8, Alternating, 15]][a, z]
Out[9]=   
                      4      6    8      5      7
   4      6      8   a    2 a    a    2 a    2 a       5        7      2
3 a  + 5 a  + 3 a  - -- - ---- - -- + ---- + ---- - 3 a  z - 3 a  z - z  + 
                      2     2     2    z      z
                     z     z     z
 
       2  2      6  2      8  2        3      3  3      5  3    4      2  4
>   2 a  z  - 6 a  z  - 3 a  z  - 5 a z  - 3 a  z  + 2 a  z  + z  - 5 a  z  - 
 
       4  4      6  4    8  4        5      3  5    7  5      2  6      4  6
>   5 a  z  + 2 a  z  + a  z  + 3 a z  + 2 a  z  + a  z  + 3 a  z  + 4 a  z  + 
 
     6  6    3  7    5  7
>   a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    2     1        1        4        3       3       1       3       3
-- + - + ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + 
 3   q    15  6    11  5    11  4    9  4    9  3    7  3    7  2    5  2
q        q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t
 
     1      3     t            3  2
>   ---- + ---- + - + 2 q t + q  t
     5      3     q
    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a15
L8a14
L8a14
L8a16
L8a16