© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a13
L8a13
L8a15
L8a15
L8a14
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a14

Visit L8a14's page at Knotilus!

Acknowledgement

L8a14 as Morse Link
DrawMorseLink

Further views:   Floor of the Stock Exchange
Floor of the Stock Exchange

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X16,7,9,8 X8,9,1,10 X4,13,5,14 X6,15,7,16

Gauss Code: {{1, -2, 3, -7, 4, -8, 5, -6}, {6, -1, 2, -3, 7, -4, 8, -5}}

Jones Polynomial: - q-23/2 + q-21/2 - q-19/2 + q-17/2 - q-15/2 + q-13/2 - q-11/2 - q-7/2

A2 (sl(3)) Invariant: q-34 + q-32 + q-30 + q-20 + q-18 + 2q-16 + q-14 + q-12

HOMFLY-PT Polynomial: - a7z-1 - 10a7z - 15a7z3 - 7a7z5 - a7z7 + a9z-1 + 6a9z + 5a9z3 + a9z5

Kauffman Polynomial: - a7z-1 + 10a7z - 15a7z3 + 7a7z5 - a7z7 + a8 - 6a8z2 + 5a8z4 - a8z6 - a9z-1 + 7a9z - 11a9z3 + 6a9z5 - a9z7 - 3a10z2 + 4a10z4 - a10z6 - a11z + 3a11z3 - a11z5 + 2a12z2 - a12z4 + a13z - a13z3 - a14z2 - a15z

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -6        1
j = -8        1
j = -10      1  
j = -12         
j = -14    11   
j = -16         
j = -18  11     
j = -20         
j = -2211       
j = -241        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 14]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 14]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[14, 5, 15, 6], 
 
>   X[16, 7, 9, 8], X[8, 9, 1, 10], X[4, 13, 5, 14], X[6, 15, 7, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -7, 4, -8, 5, -6}, {6, -1, 2, -3, 7, -4, 8, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(23/2)    -(21/2)    -(19/2)    -(17/2)    -(15/2)    -(13/2)    -(11/2)
-q        + q        - q        + q        - q        + q        - q        - 
 
     -(7/2)
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -34    -32    -30    -20    -18    2     -14    -12
q    + q    + q    + q    + q    + --- + q    + q
                                    16
                                   q
In[8]:=
HOMFLYPT[Link[8, Alternating, 14]][a, z]
Out[8]=   
   7     9
  a     a        7        9         7  3      9  3      7  5    9  5    7  7
-(--) + -- - 10 a  z + 6 a  z - 15 a  z  + 5 a  z  - 7 a  z  + a  z  - a  z
  z     z
In[9]:=
Kauffman[Link[8, Alternating, 14]][a, z]
Out[9]=   
      7    9
 8   a    a        7        9      11      13      15        8  2      10  2
a  - -- - -- + 10 a  z + 7 a  z - a   z + a   z - a   z - 6 a  z  - 3 a   z  + 
     z    z
 
       12  2    14  2       7  3       9  3      11  3    13  3      8  4
>   2 a   z  - a   z  - 15 a  z  - 11 a  z  + 3 a   z  - a   z  + 5 a  z  + 
 
       10  4    12  4      7  5      9  5    11  5    8  6    10  6    7  7
>   4 a   z  - a   z  + 7 a  z  + 6 a  z  - a   z  - a  z  - a   z  - a  z  - 
 
     9  7
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -8    -6     1        1        1        1        1        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             24  8    22  8    22  7    18  6    18  5    14  4    14  3
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1
>   ------
     10  2
    q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a14
L8a13
L8a13
L8a15
L8a15