© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L7n2
L7n2
L8a2
L8a2
L8a1
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a1

Visit L8a1's page at Knotilus!

Acknowledgement

L8a1 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X12,10,13,9 X8493 X10,5,11,6 X16,11,5,12 X2,14,3,13

Gauss Code: {{1, -8, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -4, 8, -2, 3, -7}}

Jones Polynomial: q-11/2 - 3q-9/2 + 5q-7/2 - 7q-5/2 + 7q-3/2 - 7q-1/2 + 5q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: - q-18 + 2q-14 - q-12 + q-10 - q-6 + 2q-4 + 4 + q2 + q4 + 2q6 - q8

HOMFLY-PT Polynomial: - a-1z-1 + a-1z3 + az-1 - az - 2az3 - az5 + 2a3z + 2a3z3 - a5z

Kauffman Polynomial: - a-2z4 - a-1z-1 + 5a-1z3 - 4a-1z5 + 1 - 2z2 + 7z4 - 5z6 - az-1 - 2az + 11az3 - 5az5 - 2az7 - 5a2z2 + 14a2z4 - 9a2z6 - 4a3z + 10a3z3 - 4a3z5 - 2a3z7 - 2a4z2 + 5a4z4 - 4a4z6 - 2a5z + 4a5z3 - 3a5z5 + a6z2 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6        1
j = 4       3 
j = 2      21 
j = 0     53  
j = -2    44   
j = -4   33    
j = -6  24     
j = -8 13      
j = -10 2       
j = -121        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 1]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 1]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 10, 13, 9], 
 
>   X[8, 4, 9, 3], X[10, 5, 11, 6], X[16, 11, 5, 12], X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -4, 8, -2, 3, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    3      5      7      7        7                     3/2    5/2
q        - ---- + ---- - ---- + ---- - ------- + 5 Sqrt[q] - 4 q    + q
            9/2    7/2    5/2    3/2   Sqrt[q]
           q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    2     -12    -10    -6   2     2    4      6    8
4 - q    + --- - q    + q    - q   + -- + q  + q  + 2 q  - q
            14                        4
           q                         q
In[8]:=
HOMFLYPT[Link[8, Alternating, 1]][a, z]
Out[8]=   
                                    3
   1     a            3      5     z         3      3  3      5
-(---) + - - a z + 2 a  z - a  z + -- - 2 a z  + 2 a  z  - a z
  a z    z                         a
In[9]:=
Kauffman[Link[8, Alternating, 1]][a, z]
Out[9]=   
     1    a              3        5        2      2  2      4  2    6  2
1 - --- - - - 2 a z - 4 a  z - 2 a  z - 2 z  - 5 a  z  - 2 a  z  + a  z  + 
    a z   z
 
       3                                          4
    5 z          3       3  3      5  3      4   z        2  4      4  4
>   ---- + 11 a z  + 10 a  z  + 4 a  z  + 7 z  - -- + 14 a  z  + 5 a  z  - 
     a                                            2
                                                 a
 
               5
     6  4   4 z         5      3  5      5  5      6      2  6      4  6
>   a  z  - ---- - 5 a z  - 4 a  z  - 3 a  z  - 5 z  - 9 a  z  - 4 a  z  - 
             a
 
         7      3  7
>   2 a z  - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    4      1        2        1       3       2       4       3      3
5 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     2    12  5    10  4    8  4    8  3    6  3    6  2    4  2    4
    q    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     4              2      2  2      4  2    6  3
>   ---- + 3 t + 2 q  t + q  t  + 3 q  t  + q  t
     2
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a1
L7n2
L7n2
L8a2
L8a2