© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L7n1
L7n1
L8a1
L8a1
L7n2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L7n2

Visit L7n2's page at Knotilus!

Acknowledgement

L7n2 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,7,13,8 X13,1,14,4 X5,10,6,11 X3849 X9,14,10,5 X2,12,3,11

Gauss Code: {{1, -7, -5, 3}, {-4, -1, 2, 5, -6, 4, 7, -2, -3, 6}}

Jones Polynomial: q-11/2 - q-9/2 + q-7/2 - 2q-5/2 + q-3/2 - 2q-1/2

A2 (sl(3)) Invariant: - q-18 - q-16 - q-14 - q-12 + q-10 + 2q-8 + 3q-6 + 3q-4 + 2q-2 + 2

HOMFLY-PT Polynomial: - 2az-1 - 2az + 3a3z-1 + 3a3z + a3z3 - a5z-1 - a5z

Kauffman Polynomial: 2az-1 - 3az - 3a2 + 2a2z2 - a2z4 + 3a3z-1 - 5a3z + 3a3z3 - a3z5 - 3a4 + 5a4z2 - 2a4z4 + a5z-1 - 2a5z + 3a5z3 - a5z5 - a6 + 3a6z2 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0
j = 0     2
j = -2    12
j = -4   1  
j = -6   1  
j = -8 11   
j = -10      
j = -121     


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[7, NonAlternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[7, NonAlternating, 2]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[13, 1, 14, 4], X[5, 10, 6, 11], 
 
>   X[3, 8, 4, 9], X[9, 14, 10, 5], X[2, 12, 3, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, -5, 3}, {-4, -1, 2, 5, -6, 4, 7, -2, -3, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    -(9/2)    -(7/2)    2      -(3/2)      2
q        - q       + q       - ---- + q       - -------
                                5/2             Sqrt[q]
                               q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    -16    -14    -12    -10   2    3    3    2
2 - q    - q    - q    - q    + q    + -- + -- + -- + --
                                        8    6    4    2
                                       q    q    q    q
In[8]:=
HOMFLYPT[Link[7, NonAlternating, 2]][a, z]
Out[8]=   
          3    5
-2 a   3 a    a               3      5      3  3
---- + ---- - -- - 2 a z + 3 a  z - a  z + a  z
 z      z     z
In[9]:=
Kauffman[Link[7, NonAlternating, 2]][a, z]
Out[9]=   
                             3    5
    2      4    6   2 a   3 a    a               3        5        2  2
-3 a  - 3 a  - a  + --- + ---- + -- - 3 a z - 5 a  z - 2 a  z + 2 a  z  + 
                     z     z     z
 
       4  2      6  2      3  3      5  3    2  4      4  4    6  4    3  5
>   5 a  z  + 3 a  z  + 3 a  z  + 3 a  z  - a  z  - 2 a  z  - a  z  - a  z  - 
 
     5  5
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1       1       1       1      1
2 + -- + ------ + ----- + ----- + ----- + ----- + ----
     2    12  5    8  4    8  3    6  2    4  2    2
    q    q   t    q  t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L7n2
L7n1
L7n1
L8a1
L8a1