© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L6a1
L6a1
L6a3
L6a3
L6a2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L6a2

Visit L6a2's page at Knotilus!

Acknowledgement

L6a2 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,5,7,6 X10,3,11,4 X4,11,5,12 X2738 X6,9,1,10

Gauss Code: {{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 4, -2}}

Jones Polynomial: - q-15/2 + q-13/2 - 2q-11/2 + 2q-9/2 - 2q-7/2 + q-5/2 - q-3/2

A2 (sl(3)) Invariant: q-24 + q-22 + q-20 + 2q-18 + q-16 + q-14 + q-8 + q-4

HOMFLY-PT Polynomial: - 2a3z - a3z3 - a5z-1 - 2a5z - a5z3 + a7z-1 + a7z

Kauffman Polynomial: 2a3z - a3z3 + a4z2 - a4z4 + a5z-1 - 3a5z + 2a5z3 - a5z5 - a6 + 2a6z2 - 2a6z4 + a7z-1 - 3a7z + 2a7z3 - a7z5 + a8z2 - a8z4 + 2a9z - a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2      1
j = -4     11
j = -6    1  
j = -8   11  
j = -10  11   
j = -12  1    
j = -1411     
j = -161      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[6, Alternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[6, Alternating, 2]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 5, 7, 6], X[10, 3, 11, 4], X[4, 11, 5, 12], 
 
>   X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 4, -2}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(15/2)    -(13/2)     2      2      2      -(5/2)    -(3/2)
-q        + q        - ----- + ---- - ---- + q       - q
                        11/2    9/2    7/2
                       q       q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -24    -22    -20    2     -16    -14    -8    -4
q    + q    + q    + --- + q    + q    + q   + q
                      18
                     q
In[8]:=
HOMFLYPT[Link[6, Alternating, 2]][a, z]
Out[8]=   
   5     7
  a     a       3        5      7      3  3    5  3
-(--) + -- - 2 a  z - 2 a  z + a  z - a  z  - a  z
  z     z
In[9]:=
Kauffman[Link[6, Alternating, 2]][a, z]
Out[9]=   
       5    7
  6   a    a       3        5        7        9      4  2      6  2    8  2
-a  + -- + -- + 2 a  z - 3 a  z - 3 a  z + 2 a  z + a  z  + 2 a  z  + a  z  - 
      z    z
 
     3  3      5  3      7  3    9  3    4  4      6  4    8  4    5  5    7  5
>   a  z  + 2 a  z  + 2 a  z  - a  z  - a  z  - 2 a  z  - a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2     1        1        1        1        1        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
             16  6    14  6    14  5    12  4    10  4    10  3    8  3
            q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
      1       1      1
>   ----- + ----- + ----
     8  2    6  2    4
    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L6a2
L6a1
L6a1
L6a3
L6a3