© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L5a1
L5a1
L6a2
L6a2
L6a1
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L6a1

Visit L6a1's page at Knotilus!

Acknowledgement

L6a1 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10

Gauss Code: {{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}}

Jones Polynomial: - q-9/2 + q-7/2 - 3q-5/2 + 2q-3/2 - 2q-1/2 + 2q1/2 - q3/2

A2 (sl(3)) Invariant: q-16 + 2q-14 + q-12 + 2q-10 + 2q-8 + q-6 + q-4 - q-2 - q2 + q6

HOMFLY-PT Polynomial: - a-1z + az + az3 - a3z-1 - 2a3z + a5z-1

Kauffman Polynomial: a-1z - a-1z3 + 3z2 - 2z4 - az5 + 3a2z2 - 3a2z4 - a3z-1 + a3z - a3z5 + a4 - a4z4 - a5z-1 + 2a5z - a5z3

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 4      1
j = 2     1 
j = 0    11 
j = -2   22  
j = -4  1    
j = -6  2    
j = -811     
j = -101      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[6, Alternating, 1]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[6, Alternating, 1]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11], 
 
>   X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(9/2)    -(7/2)    3      2        2                   3/2
-q       + q       - ---- + ---- - ------- + 2 Sqrt[q] - q
                      5/2    3/2   Sqrt[q]
                     q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -16    2     -12    2    2     -6    -4    -2    2    6
q    + --- + q    + --- + -- + q   + q   - q   - q  + q
        14           10    8
       q            q     q
In[8]:=
HOMFLYPT[Link[6, Alternating, 1]][a, z]
Out[8]=   
   3     5
  a     a    z            3        3
-(--) + -- - - + a z - 2 a  z + a z
  z     z    a
In[9]:=
Kauffman[Link[6, Alternating, 1]][a, z]
Out[9]=   
      3    5                                         3
 4   a    a    z    3        5        2      2  2   z     5  3      4
a  - -- - -- + - + a  z + 2 a  z + 3 z  + 3 a  z  - -- - a  z  - 2 z  - 
     z    z    a                                    a
 
       2  4    4  4      5    3  5
>   3 a  z  - a  z  - a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1       1       2       1      2          2      4  2
1 + -- + ------ + ----- + ----- + ----- + ----- + ---- + t + q  t + q  t
     2    10  4    8  4    8  3    6  2    4  2    2
    q    q   t    q  t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L6a1
L5a1
L5a1
L6a2
L6a2