© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n52
L11n52
L11n54
L11n54
L11n53
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n53

Visit L11n53's page at Knotilus!

Acknowledgement

L11n53 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X12,8,13,7 X9,16,10,17 X13,20,14,21 X17,5,18,22 X21,19,22,18 X19,14,20,15 X15,8,16,9 X2536 X4,12,1,11

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, 9, -4, -2, 11, -3, -5, 8, -9, 4, -6, 7, -8, 5, -7, 6}}

Jones Polynomial: q-7/2 - 3q-5/2 + 4q-3/2 - 6q-1/2 + 5q1/2 - 5q3/2 + 4q5/2 - 3q7/2 + q9/2

A2 (sl(3)) Invariant: - q-12 + 2q-8 + 2q-4 + q-2 + 1 + 2q2 + 2q6 + q12 - q14

HOMFLY-PT Polynomial: a-3z + a-3z3 - a-1z-1 - 3a-1z - 3a-1z3 - a-1z5 + az-1 + 3az + 2az3 - a3z

Kauffman Polynomial: - a-4z2 + 3a-4z4 - a-4z6 + 2a-3z - 8a-3z3 + 11a-3z5 - 3a-3z7 + a-2z2 - 8a-2z4 + 11a-2z6 - 3a-2z8 - a-1z-1 + 6a-1z - 16a-1z3 + 12a-1z5 - a-1z9 + 1 + 5z2 - 20z4 + 17z6 - 4z8 - az-1 + 6az - 10az3 + az5 + 3az7 - az9 + 3a2z2 - 9a2z4 + 5a2z6 - a2z8 + 2a3z - 2a3z3

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10        1
j = 8       2 
j = 6      21 
j = 4     32  
j = 2   132   
j = 0   43    
j = -2  24     
j = -4 12      
j = -6 2       
j = -81        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 53]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 53]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[9, 16, 10, 17], 
 
>   X[13, 20, 14, 21], X[17, 5, 18, 22], X[21, 19, 22, 18], X[19, 14, 20, 15], 
 
>   X[15, 8, 16, 9], X[2, 5, 3, 6], X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, 9, -4, -2, 11, -3, -5, 8, -9, 4, -6, 7, 
 
>    -8, 5, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(7/2)    3      4        6                     3/2      5/2      7/2    9/2
q       - ---- + ---- - ------- + 5 Sqrt[q] - 5 q    + 4 q    - 3 q    + q
           5/2    3/2   Sqrt[q]
          q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12   2    2     -2      2      6    12    14
1 - q    + -- + -- + q   + 2 q  + 2 q  + q   - q
            8    4
           q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 53]][a, z]
Out[8]=   
                                        3      3             5
   1     a   z    3 z            3     z    3 z         3   z
-(---) + - + -- - --- + 3 a z - a  z + -- - ---- + 2 a z  - --
  a z    z    3    a                    3    a              a
             a                         a
In[9]:=
Kauffman[Link[11, NonAlternating, 53]][a, z]
Out[9]=   
                                                   2    2                3
     1    a   2 z   6 z              3        2   z    z       2  2   8 z
1 - --- - - + --- + --- + 6 a z + 2 a  z + 5 z  - -- + -- + 3 a  z  - ---- - 
    a z   z    3     a                             4    2               3
              a                                   a    a               a
 
        3                                  4      4                 5       5
    16 z          3      3  3       4   3 z    8 z       2  4   11 z    12 z
>   ----- - 10 a z  - 2 a  z  - 20 z  + ---- - ---- - 9 a  z  + ----- + ----- + 
      a                                   4      2                3       a
                                         a      a                a
 
                    6       6                7                      8
       5       6   z    11 z       2  6   3 z         7      8   3 z     2  8
>   a z  + 17 z  - -- + ----- + 5 a  z  - ---- + 3 a z  - 4 z  - ---- - a  z  - 
                    4     2                 3                      2
                   a     a                 a                      a
 
     9
    z       9
>   -- - a z
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
    4     2     1       2       1      2      2              2        2  2
4 + -- + q  + ----- + ----- + ----- + ---- + ---- + 3 t + 3 q  t + 2 q  t  + 
     2         8  3    6  2    4  2    4      2
    q         q  t    q  t    q  t    q  t   q  t
 
       4  2      4  3      6  3    6  4      8  4    10  5
>   3 q  t  + 2 q  t  + 2 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n53
L11n52
L11n52
L11n54
L11n54