© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n51
L11n51
L11n53
L11n53
L11n52
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n52

Visit L11n52's page at Knotilus!

Acknowledgement

L11n52 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X12,8,13,7 X13,18,14,19 X16,9,17,10 X8,17,9,18 X19,22,20,5 X15,21,16,20 X21,15,22,14 X2536 X4,12,1,11

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -6, 5, -2, 11, -3, -4, 9, -8, -5, 6, 4, -7, 8, -9, 7}}

Jones Polynomial: - q-11/2 + 2q-9/2 - 4q-7/2 + 5q-5/2 - 5q-3/2 + 5q-1/2 - 5q1/2 + 3q3/2 - 2q5/2

A2 (sl(3)) Invariant: q-18 + q-16 + 2q-12 - 2q-4 - 1 + q2 + 2q4 + q6 + 3q8 + q10

HOMFLY-PT Polynomial: - a-3z-1 + a-1z-1 - a-1z3 + az-1 + 3az + 3az3 + az5 - 2a3z-1 - 4a3z - 2a3z3 + a5z-1 + a5z

Kauffman Polynomial: a-3z-1 - a-3z - a-2 + a-2z2 - a-2z4 + a-1z-1 + a-1z - 9a-1z3 + 8a-1z5 - 2a-1z7 - 2 + 8z2 - 16z4 + 13z6 - 3z8 - az-1 + 12az - 28az3 + 19az5 - az7 - az9 - 3a2 + 12a2z2 - 26a2z4 + 22a2z6 - 5a2z8 - 2a3z-1 + 15a3z - 27a3z3 + 16a3z5 - a3z9 - a4 + 5a4z2 - 11a4z4 + 9a4z6 - 2a4z8 - a5z-1 + 5a5z - 8a5z3 + 5a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 6        2
j = 4       1 
j = 2      42 
j = 0     33  
j = -2    231  
j = -4   33    
j = -6  12     
j = -8 13      
j = -10 1       
j = -121        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 52]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 52]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[13, 18, 14, 19], 
 
>   X[16, 9, 17, 10], X[8, 17, 9, 18], X[19, 22, 20, 5], X[15, 21, 16, 20], 
 
>   X[21, 15, 22, 14], X[2, 5, 3, 6], X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -6, 5, -2, 11, -3, -4, 9, -8, -5, 6, 4, 
 
>    -7, 8, -9, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    2      4      5      5        5                     3/2      5/2
-q        + ---- - ---- + ---- - ---- + ------- - 5 Sqrt[q] + 3 q    - 2 q
             9/2    7/2    5/2    3/2   Sqrt[q]
            q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -18    -16    2    2     2      4    6      8    10
-1 + q    + q    + --- - -- + q  + 2 q  + q  + 3 q  + q
                    12    4
                   q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 52]][a, z]
Out[8]=   
                       3    5                            3
   1       1    a   2 a    a               3      5     z         3      3  3
-(----) + --- + - - ---- + -- + 3 a z - 4 a  z + a  z - -- + 3 a z  - 2 a  z  + 
   3      a z   z    z     z                            a
  a  z
 
       5
>   a z
In[9]:=
Kauffman[Link[11, NonAlternating, 52]][a, z]
Out[9]=   
                                           3    5
      -2      2    4    1      1    a   2 a    a    z    z                3
-2 - a   - 3 a  - a  + ---- + --- - - - ---- - -- - -- + - + 12 a z + 15 a  z + 
                        3     a z   z    z     z     3   a
                       a  z                         a
 
                     2                           3
       5        2   z        2  2      4  2   9 z          3       3  3
>   5 a  z + 8 z  + -- + 12 a  z  + 5 a  z  - ---- - 28 a z  - 27 a  z  - 
                     2                         a
                    a
 
                       4                            5
       5  3       4   z        2  4       4  4   8 z          5       3  5
>   8 a  z  - 16 z  - -- - 26 a  z  - 11 a  z  + ---- + 19 a z  + 16 a  z  + 
                       2                          a
                      a
 
                                              7
       5  5       6       2  6      4  6   2 z       7    5  7      8
>   5 a  z  + 13 z  + 22 a  z  + 9 a  z  - ---- - a z  - a  z  - 3 z  - 
                                            a
 
       2  8      4  8      9    3  9
>   5 a  z  - 2 a  z  - a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2      2     1        1        1       3       1       2       3
3 + q   + 4 q  + ------ + ------ + ----- + ----- + ----- + ----- + ----- + 
                  12  6    10  5    8  5    8  4    6  4    6  3    4  3
                 q   t    q   t    q  t    q  t    q  t    q  t    q  t
 
      3       2     3    3        2      4        6  2
>   ----- + ----- + - + ---- + 2 q  t + q  t + 2 q  t
     4  2    2  2   t    2
    q  t    q  t        q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n52
L11n51
L11n51
L11n53
L11n53