© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n444
L11n444
L11n446
L11n446
L11n445
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n445

Visit L11n445's page at Knotilus!

Acknowledgement

L11n445 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X19,17,20,22 X21,9,22,16 X15,21,16,20 X17,12,18,13 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 4}, {-9, 5, -6, 8, -7, 6}, {-11, 2, -5, 9, -4, 3, -8, 7}}

Jones Polynomial: - 2q-3/2 + 3q-1/2 - 9q1/2 + 9q3/2 - 12q5/2 + 9q7/2 - 10q9/2 + 6q11/2 - 3q13/2 + q15/2

A2 (sl(3)) Invariant: 2q-6 + 3q-4 + 3q-2 + 10 + 8q2 + 10q4 + 12q6 + 9q8 + 12q10 + 6q12 + 6q14 + 3q16 - 2q18 + q20 - q22 - q24

HOMFLY-PT Polynomial: a-7z-1 + a-7z - a-5z-3 - 5a-5z-1 - 6a-5z - 3a-5z3 + 3a-3z-3 + 10a-3z-1 + 12a-3z + 7a-3z3 + 2a-3z5 - 3a-1z-3 - 9a-1z-1 - 9a-1z - 4a-1z3 + az-3 + 3az-1 + 2az

Kauffman Polynomial: a-8 - 3a-8z2 + 3a-8z4 - a-8z6 - 2a-7z-1 + 6a-7z - 9a-7z3 + 9a-7z5 - 3a-7z7 + 6a-6 - 14a-6z2 + 12a-6z4 + 3a-6z6 - 3a-6z8 + a-5z-3 - 11a-5z-1 + 31a-5z - 45a-5z3 + 38a-5z5 - 9a-5z7 - a-5z9 - 3a-4z-2 + 18a-4 - 30a-4z2 + 9a-4z4 + 13a-4z6 - 7a-4z8 + 3a-3z-3 - 18a-3z-1 + 48a-3z - 66a-3z3 + 43a-3z5 - 10a-3z7 - a-3z9 - 6a-2z-2 + 21a-2 - 24a-2z2 + 8a-2z6 - 4a-2z8 + 3a-1z-3 - 14a-1z-1 + 30a-1z - 33a-1z3 + 14a-1z5 - 4a-1z7 - 3z-2 + 9 - 5z2 - z6 + az-3 - 5az-1 + 7az - 3az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16         1
j = 14        2 
j = 12       41 
j = 10      62  
j = 8     56   
j = 6    74    
j = 4  135     
j = 2  77      
j = 0 28       
j = -2 1        
j = -42         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 445]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 445]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[7, 15, 8, 14], X[13, 5, 14, 8], 
 
>   X[11, 18, 12, 19], X[19, 17, 20, 22], X[21, 9, 22, 16], X[15, 21, 16, 20], 
 
>   X[17, 12, 18, 13], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 4}, {-9, 5, -6, 8, -7, 6}, 
 
>   {-11, 2, -5, 9, -4, 3, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2       3                     3/2       5/2      7/2       9/2      11/2
---- + ------- - 9 Sqrt[q] + 9 q    - 12 q    + 9 q    - 10 q    + 6 q     - 
 3/2   Sqrt[q]
q
 
       13/2    15/2
>   3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     2    3    3       2       4       6      8       10      12      14
10 + -- + -- + -- + 8 q  + 10 q  + 12 q  + 9 q  + 12 q   + 6 q   + 6 q   + 
      6    4    2
     q    q    q
 
       16      18    20    22    24
>   3 q   - 2 q   + q   - q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 445]][a, z]
Out[8]=   
    1        3      3     a     1      5      10     9    3 a   z    6 z
-(-----) + ----- - ---- + -- + ---- - ---- + ---- - --- + --- + -- - --- + 
   5  3     3  3      3    3    7      5      3     a z    z     7    5
  a  z     a  z    a z    z    a  z   a  z   a  z               a    a
 
                            3      3      3      5
    12 z   9 z           3 z    7 z    4 z    2 z
>   ---- - --- + 2 a z - ---- + ---- - ---- + ----
      3     a              5      3     a       3
     a                    a      a             a
In[9]:=
Kauffman[Link[11, NonAlternating, 445]][a, z]
Out[9]=   
     -8   6    18   21     1       3      3     a    3      3       6
9 + a   + -- + -- + -- + ----- + ----- + ---- + -- - -- - ----- - ----- - 
           6    4    2    5  3    3  3      3    3    2    4  2    2  2
          a    a    a    a  z    a  z    a z    z    z    a  z    a  z
 
     2      11     18    14    5 a   6 z   31 z   48 z   30 z              2
>   ---- - ---- - ---- - --- - --- + --- + ---- + ---- + ---- + 7 a z - 5 z  - 
     7      5      3     a z    z     7      5      3     a
    a  z   a  z   a  z               a      a      a
 
       2       2       2       2      3       3       3       3
    3 z    14 z    30 z    24 z    9 z    45 z    66 z    33 z         3
>   ---- - ----- - ----- - ----- - ---- - ----- - ----- - ----- - 3 a z  + 
      8      6       4       2       7      5       3       a
     a      a       a       a       a      a       a
 
       4       4      4      5       5       5       5         6      6
    3 z    12 z    9 z    9 z    38 z    43 z    14 z     6   z    3 z
>   ---- + ----- + ---- + ---- + ----- + ----- + ----- - z  - -- + ---- + 
      8      6       4      7      5       3       a           8     6
     a      a       a      a      a       a                   a     a
 
        6      6      7      7       7      7      8      8      8    9    9
    13 z    8 z    3 z    9 z    10 z    4 z    3 z    7 z    4 z    z    z
>   ----- + ---- - ---- - ---- - ----- - ---- - ---- - ---- - ---- - -- - --
      4       2      7      5      3      a       6      4      2     5    3
     a       a      a      a      a              a      a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2    4     2     2    1        2        4        4  2      6  2
8 + 7 q  + q  + ----- + - + ---- + 7 q  t + 3 q  t + 5 q  t  + 7 q  t  + 
                 4  2   t    2
                q  t        q  t
 
       6  3      8  3      8  4      10  4      10  5      12  5    12  6
>   4 q  t  + 5 q  t  + 6 q  t  + 6 q   t  + 2 q   t  + 4 q   t  + q   t  + 
 
       14  6    16  7
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n445
L11n444
L11n444
L11n446
L11n446