© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n443
L11n443
L11n445
L11n445
L11n444
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n444

Visit L11n444's page at Knotilus!

Acknowledgement

L11n444 as Morse Link
DrawMorseLink

PD Presentation: X6172 X2536 X11,19,12,18 X10,3,11,4 X4,9,1,10 X16,7,17,8 X8,15,5,16 X13,20,14,21 X19,15,20,22 X21,12,22,13 X17,9,18,14

Gauss Code: {{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, -3, 10, -8, 11}, {7, -6, -11, 3, -9, 8, -10, 9}}

Jones Polynomial: - q-17/2 + 2q-15/2 - 6q-13/2 + 6q-11/2 - 10q-9/2 + 8q-7/2 - 10q-5/2 + 6q-3/2 - 5q-1/2 + 2q1/2

A2 (sl(3)) Invariant: q-28 + 3q-26 + 3q-24 + 6q-22 + 10q-20 + 9q-18 + 13q-16 + 11q-14 + 9q-12 + 9q-10 + 4q-8 + 5q-6 - q-2 + 1 - 2q2

HOMFLY-PT Polynomial: az-1 + 3az + 2az3 - a3z-3 - 7a3z-1 - 13a3z - 8a3z3 - 2a3z5 + 3a5z-3 + 12a5z-1 + 14a5z + 5a5z3 - 3a7z-3 - 7a7z-1 - 4a7z + a9z-3 + a9z-1

Kauffman Polynomial: 1 - 3z2 - 2az-1 + 6az - 5az3 - az5 + 6a2 - 14a2z2 + 11a2z4 - 5a2z6 + a3z-3 - 11a3z-1 + 30a3z - 39a3z3 + 27a3z5 - 8a3z7 - 3a4z-2 + 18a4 - 28a4z2 + 11a4z4 + 9a4z6 - 5a4z8 + 3a5z-3 - 18a5z-1 + 49a5z - 74a5z3 + 54a5z5 - 11a5z7 - a5z9 - 6a6z-2 + 21a6 - 24a6z2 - 4a6z4 + 21a6z6 - 7a6z8 + 3a7z-3 - 14a7z-1 + 35a7z - 50a7z3 + 31a7z5 - 4a7z7 - a7z9 - 3a8z-2 + 9a8 - 7a8z2 - 4a8z4 + 7a8z6 - 2a8z8 + a9z-3 - 5a9z-1 + 10a9z - 10a9z3 + 5a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 2         2
j = 0        3 
j = -2       43 
j = -4      631 
j = -6     57   
j = -8    541   
j = -10   48     
j = -12  22      
j = -14 15       
j = -16 1        
j = -181         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 444]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 444]]
Out[4]=   
PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[11, 19, 12, 18], X[10, 3, 11, 4], 
 
>   X[4, 9, 1, 10], X[16, 7, 17, 8], X[8, 15, 5, 16], X[13, 20, 14, 21], 
 
>   X[19, 15, 20, 22], X[21, 12, 22, 13], X[17, 9, 18, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, -3, 10, -8, 11}, 
 
>   {7, -6, -11, 3, -9, 8, -10, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     2       6       6      10     8      10     6        5
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
>   2 Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    3     3     6    10     9    13    11     9     9    4    5
1 + q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- + -- - 
            26    24    22    20    18    16    14    12    10    8    6
           q     q     q     q     q     q     q     q     q     q    q
 
     -2      2
>   q   - 2 q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 444]][a, z]
Out[8]=   
   3       5      7    9          3       5      7    9
  a     3 a    3 a    a    a   7 a    12 a    7 a    a                3
-(--) + ---- - ---- + -- + - - ---- + ----- - ---- + -- + 3 a z - 13 a  z + 
   3      3      3     3   z    z       z      z     z
  z      z      z     z
 
        5        7          3      3  3      5  3      3  5
>   14 a  z - 4 a  z + 2 a z  - 8 a  z  + 5 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 444]][a, z]
Out[9]=   
                                   3      5      7    9      4      6      8
       2       4       6      8   a    3 a    3 a    a    3 a    6 a    3 a
1 + 6 a  + 18 a  + 21 a  + 9 a  + -- + ---- + ---- + -- - ---- - ---- - ---- - 
                                   3     3      3     3     2      2      2
                                  z     z      z     z     z      z      z
 
              3       5       7      9
    2 a   11 a    18 a    14 a    5 a                3         5         7
>   --- - ----- - ----- - ----- - ---- + 6 a z + 30 a  z + 49 a  z + 35 a  z + 
     z      z       z       z      z
 
        9        2       2  2       4  2       6  2      8  2        3
>   10 a  z - 3 z  - 14 a  z  - 28 a  z  - 24 a  z  - 7 a  z  - 5 a z  - 
 
        3  3       5  3       7  3       9  3       2  4       4  4      6  4
>   39 a  z  - 74 a  z  - 50 a  z  - 10 a  z  + 11 a  z  + 11 a  z  - 4 a  z  - 
 
       8  4      5       3  5       5  5       7  5      9  5      2  6
>   4 a  z  - a z  + 27 a  z  + 54 a  z  + 31 a  z  + 5 a  z  - 5 a  z  + 
 
       4  6       6  6      8  6      3  7       5  7      7  7    9  7
>   9 a  z  + 21 a  z  + 7 a  z  - 8 a  z  - 11 a  z  - 4 a  z  - a  z  - 
 
       4  8      6  8      8  8    5  9    7  9
>   5 a  z  - 7 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4   3      1        1        1        5        2        2        4
3 + q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
           2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
          q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        5       4       5       1       7       6      3      4
>   ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 
     10  4    8  4    8  3    6  3    8  2    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2
>   2 q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n444
L11n443
L11n443
L11n445
L11n445