PD Presentation: |
X8192 X9,20,10,21 X14,5,15,6 X12,14,7,13 X16,8,17,7 X22,18,13,17 X3,10,4,11 X18,11,19,12 X6,15,1,16 X19,4,20,5 X2,21,3,22 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 429]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 429]] |
Out[4]= | PD[X[8, 1, 9, 2], X[9, 20, 10, 21], X[14, 5, 15, 6], X[12, 14, 7, 13],
> X[16, 8, 17, 7], X[22, 18, 13, 17], X[3, 10, 4, 11], X[18, 11, 19, 12],
> X[6, 15, 1, 16], X[19, 4, 20, 5], X[2, 21, 3, 22]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, -7, 10, 3, -9}, {5, -1, -2, 7, 8, -4},
> {4, -3, 9, -5, 6, -8, -10, 2, 11, -6}] |
In[6]:= | Jones[L][q] |
Out[6]= | -8 2 5 5 7 6 6 4
3 + q - -- + -- - -- + -- - -- + -- - - - q
7 6 5 4 3 2 q
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 -26 2 2 4 5 3 5 3 -8 -6 -4 2
1 + q - q + --- + --- + --- + --- + --- + --- + --- + q + q + q - q
24 22 20 18 16 14 10
q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 429]][a, z] |
Out[8]= | 4 6 8
4 6 8 a 2 a a 2 2 4 2 6 2 8 2
4 a - 5 a + a + -- - ---- + -- - 3 a z + 11 a z - 7 a z + a z -
2 2 2
z z z
2 4 4 4 6 4 2 6 4 6 6 6 4 8
> 4 a z + 12 a z - 5 a z - a z + 6 a z - a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 429]][a, z] |
Out[9]= | 4 6 8 5 7
2 4 6 8 a 2 a a 2 a 2 a 3
a + 8 a + 12 a + 6 a - -- - ---- - -- + ---- + ---- - a z - 3 a z -
2 2 2 z z
z z z
5 7 2 2 4 2 6 2 8 2 10 2
> 8 a z - 6 a z - 7 a z - 26 a z - 29 a z - 9 a z + a z +
3 3 3 5 3 7 3 9 3 2 4 4 4
> 4 a z + 10 a z + 10 a z + 6 a z + 2 a z + 18 a z + 44 a z +
6 4 8 4 5 3 5 5 5 7 5 2 6
> 31 a z + 5 a z - 4 a z - 2 a z - 3 a z - 5 a z - 14 a z -
4 6 6 6 7 3 7 5 7 7 7 2 8
> 32 a z - 18 a z + a z - 6 a z - 5 a z + 2 a z + 3 a z +
4 8 6 8 3 9 5 9
> 7 a z + 4 a z + 2 a z + 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 4 1 1 2 3 3 3 2 4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
5 3 17 6 15 6 15 5 13 4 11 4 11 3 9 3 9 2
q q q t q t q t q t q t q t q t q t
2
4 3 3 2 t 2 t t 2 3 3
> ----- + ---- + ---- + --- + --- + -- + 2 q t + q t
7 2 7 5 3 q q
q t q t q t q |