© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n427
L11n427
L11n429
L11n429
L11n428
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n428

Visit L11n428's page at Knotilus!

Acknowledgement

L11n428 as Morse Link
DrawMorseLink

PD Presentation: X8192 X9,20,10,21 X5,15,6,14 X12,14,7,13 X16,8,17,7 X22,18,13,17 X3,10,4,11 X18,11,19,12 X15,1,16,6 X19,4,20,5 X2,21,3,22

Gauss Code: {{1, -11, -7, 10, -3, 9}, {5, -1, -2, 7, 8, -4}, {4, 3, -9, -5, 6, -8, -10, 2, 11, -6}}

Jones Polynomial: q-4 + q-2 + 1 + q + q3 - q4

A2 (sl(3)) Invariant: 2q-14 + 2q-12 + 2q-10 + 3q-8 + 3q-6 + 4q-4 + 4q-2 + 4 + 3q2 + q4 + q6 - q10 - q12

HOMFLY-PT Polynomial: - 2a-2 - 4a-2z2 - a-2z4 + z-2 + 7 + 10z2 + 6z4 + z6 - 2a2z-2 - 7a2 - 6a2z2 - a2z4 + a4z-2 + 2a4

Kauffman Polynomial: - 2a-3z + 9a-3z3 - 6a-3z5 + a-3z7 + 4a-2 - 12a-2z2 + 15a-2z4 - 7a-2z6 + a-2z8 - 6a-1z + 13a-1z3 - 7a-1z5 + a-1z7 - z-2 + 13 - 32z2 + 27z4 - 9z6 + z8 + 2az-1 - 7az + 5az3 - az5 - 2a2z-2 + 13a2 - 24a2z2 + 13a2z4 - 2a2z6 + 2a3z-1 - 3a3z + a3z3 - a4z-2 + 5a4 - 4a4z2 + a4z4

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9         1
j = 7          
j = 5      111 
j = 3      1   
j = 1    211   
j = -1   131    
j = -3  111     
j = -5 131      
j = -7  1       
j = -91         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 428]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 428]]
Out[4]=   
PD[X[8, 1, 9, 2], X[9, 20, 10, 21], X[5, 15, 6, 14], X[12, 14, 7, 13], 
 
>   X[16, 8, 17, 7], X[22, 18, 13, 17], X[3, 10, 4, 11], X[18, 11, 19, 12], 
 
>   X[15, 1, 16, 6], X[19, 4, 20, 5], X[2, 21, 3, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, -7, 10, -3, 9}, {5, -1, -2, 7, 8, -4}, 
 
>   {4, 3, -9, -5, 6, -8, -10, 2, 11, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
     -4    -2        3    4
1 + q   + q   + q + q  - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     2     2     2    3    3    4    4       2    4    6    10    12
4 + --- + --- + --- + -- + -- + -- + -- + 3 q  + q  + q  - q   - q
     14    12    10    8    6    4    2
    q     q     q     q    q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 428]][a, z]
Out[8]=   
                                2    4              2                     4
    2       2      4    -2   2 a    a        2   4 z       2  2      4   z
7 - -- - 7 a  + 2 a  + z   - ---- + -- + 10 z  - ---- - 6 a  z  + 6 z  - -- - 
     2                         2     2             2                      2
    a                         z     z             a                      a
 
     2  4    6
>   a  z  + z
In[9]:=
Kauffman[Link[11, NonAlternating, 428]][a, z]
Out[9]=   
                                  2    4            3
     4        2      4    -2   2 a    a    2 a   2 a    2 z   6 z
13 + -- + 13 a  + 5 a  - z   - ---- - -- + --- + ---- - --- - --- - 7 a z - 
      2                          2     2    z     z      3     a
     a                          z     z                 a
 
                         2                           3       3
       3         2   12 z        2  2      4  2   9 z    13 z         3
>   3 a  z - 32 z  - ----- - 24 a  z  - 4 a  z  + ---- + ----- + 5 a z  + 
                       2                            3      a
                      a                            a
 
                        4                         5      5
     3  3       4   15 z        2  4    4  4   6 z    7 z       5      6
>   a  z  + 27 z  + ----- + 13 a  z  + a  z  - ---- - ---- - a z  - 9 z  - 
                      2                          3     a
                     a                          a
 
       6              7    7         8
    7 z       2  6   z    z     8   z
>   ---- - 2 a  z  + -- + -- + z  + --
      2               3   a          2
     a               a              a
In[10]:=
Kh[L][q, t]
Out[10]=   
 -3   3           1       1       1       3       1      1      1      1    t
q   + - + 2 q + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + - + 
      q          9  4    5  3    7  2    5  2    3  2    5      3     q t   q
                q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
             2    3  2    5  2    5  3    5  4    9  5
>   q t + q t  + q  t  + q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n428
L11n427
L11n427
L11n429
L11n429