© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n422
L11n422
L11n424
L11n424
L11n423
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n423

Visit L11n423's page at Knotilus!

Acknowledgement

L11n423 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,8,17,7 X10,4,11,3 X2,18,3,17 X18,9,19,10 X20,12,21,11 X5,14,6,15 X15,13,16,22 X13,6,14,1 X4,19,5,20 X12,22,7,21

Gauss Code: {{1, -4, 3, -10, -7, 9}, {2, -1, 5, -3, 6, -11}, {-9, 7, -8, -2, 4, -5, 10, -6, 11, 8}}

Jones Polynomial: - q-4 + 3q-3 - 3q-2 + 5q-1 - 4 + 5q - 3q2 + 3q3 - q4

A2 (sl(3)) Invariant: - q-12 + q-10 + q-8 + 3q-6 + 4q-4 + 3q-2 + 5 + 3q2 + 4q4 + 3q6 + q8 + q10 - q12

HOMFLY-PT Polynomial: a-2z-2 + a-2 - 2a-2z2 - a-2z4 - 2z-2 - 2 + 3z2 + 4z4 + z6 + a2z-2 + a2 - 2a2z2 - a2z4

Kauffman Polynomial: 3a-3z3 - 4a-3z5 + a-3z7 + a-2z-2 - 2a-2 - 7a-2z2 + 20a-2z4 - 15a-2z6 + 3a-2z8 - 2a-1z-1 + 2a-1z + a-1z3 + 5a-1z5 - 8a-1z7 + 2a-1z9 + 2z-2 - 3 - 14z2 + 40z4 - 30z6 + 6z8 - 2az-1 + 2az + az3 + 5az5 - 8az7 + 2az9 + a2z-2 - 2a2 - 7a2z2 + 20a2z4 - 15a2z6 + 3a2z8 + 3a3z3 - 4a3z5 + a3z7

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 9        1
j = 7       2 
j = 5      22 
j = 3     321 
j = 1    34   
j = -1   221   
j = -3  24     
j = -5 11      
j = -7 2       
j = -91        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 423]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 423]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 8, 17, 7], X[10, 4, 11, 3], X[2, 18, 3, 17], 
 
>   X[18, 9, 19, 10], X[20, 12, 21, 11], X[5, 14, 6, 15], X[15, 13, 16, 22], 
 
>   X[13, 6, 14, 1], X[4, 19, 5, 20], X[12, 22, 7, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -10, -7, 9}, {2, -1, 5, -3, 6, -11}, 
 
>   {-9, 7, -8, -2, 4, -5, 10, -6, 11, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
      -4   3    3    5            2      3    4
-4 - q   + -- - -- + - + 5 q - 3 q  + 3 q  - q
            3    2   q
           q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10    -8   3    4    3       2      4      6    8    10    12
5 - q    + q    + q   + -- + -- + -- + 3 q  + 4 q  + 3 q  + q  + q   - q
                         6    4    2
                        q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 423]][a, z]
Out[8]=   
                              2             2                     4
      -2    2   2      1     a       2   2 z       2  2      4   z     2  4    6
-2 + a   + a  - -- + ----- + -- + 3 z  - ---- - 2 a  z  + 4 z  - -- - a  z  + z
                 2    2  2    2            2                      2
                z    a  z    z            a                      a
In[9]:=
Kauffman[Link[11, NonAlternating, 423]][a, z]
Out[9]=   
                               2                                        2
     2       2   2      1     a     2    2 a   2 z               2   7 z
-3 - -- - 2 a  + -- + ----- + -- - --- - --- + --- + 2 a z - 14 z  - ---- - 
      2           2    2  2    2   a z    z     a                      2
     a           z    a  z    z                                       a
 
                 3    3                                4                 5
       2  2   3 z    z       3      3  3       4   20 z        2  4   4 z
>   7 a  z  + ---- + -- + a z  + 3 a  z  + 40 z  + ----- + 20 a  z  - ---- + 
                3    a                               2                  3
               a                                    a                  a
 
       5                                  6               7      7
    5 z         5      3  5       6   15 z        2  6   z    8 z         7
>   ---- + 5 a z  - 4 a  z  - 30 z  - ----- - 15 a  z  + -- - ---- - 8 a z  + 
     a                                  2                 3    a
                                       a                 a
 
                      8                9
     3  7      8   3 z       2  8   2 z         9
>   a  z  + 6 z  + ---- + 3 a  z  + ---- + 2 a z
                     2               a
                    a
In[10]:=
Kh[L][q, t]
Out[10]=   
1            3     1       2       1       1       2       4      2      2
- + 4 q + 3 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q                 9  5    7  4    5  4    5  3    3  3    3  2      2   q t
                 q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    3 q      3        5      3  2      5  2      7  2    9  3
>   --- + 2 q  t + 2 q  t + q  t  + 2 q  t  + 2 q  t  + q  t
     t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n423
L11n422
L11n422
L11n424
L11n424