© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n421
L11n421
L11n423
L11n423
L11n422
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n422

Visit L11n422's page at Knotilus!

Acknowledgement

L11n422 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,8,17,7 X3,10,4,11 X2,18,3,17 X9,19,10,18 X20,12,21,11 X14,6,15,5 X22,15,13,16 X6,14,1,13 X19,5,20,4 X12,22,7,21

Gauss Code: {{1, -4, -3, 10, 7, -9}, {2, -1, -5, 3, 6, -11}, {9, -7, 8, -2, 4, 5, -10, -6, 11, -8}}

Jones Polynomial: - 1 + 4q - 5q2 + 8q3 - 8q4 + 8q5 - 6q6 + 5q7 - 2q8 + q9

A2 (sl(3)) Invariant: - 1 + 2q2 + 2q6 + 3q8 + 3q12 + q14 + 4q16 + 4q18 + 2q20 + 4q22 + q24 + q26 + q28

HOMFLY-PT Polynomial: a-8z-2 + 2a-8 + a-8z2 - 2a-6z-2 - 6a-6 - 6a-6z2 - 2a-6z4 + a-4z-2 + 3a-4 + 6a-4z2 + 4a-4z4 + a-4z6 + a-2 - a-2z2 - a-2z4

Kauffman Polynomial: - a-10 + 4a-10z2 - 4a-10z4 + a-10z6 + 3a-9z3 - 6a-9z5 + 2a-9z7 - a-8z-2 + 5a-8 - 12a-8z2 + 14a-8z4 - 11a-8z6 + 3a-8z8 + 2a-7z-1 - 9a-7z + 18a-7z3 - 15a-7z5 + 2a-7z7 + a-7z9 - 2a-6z-2 + 11a-6 - 23a-6z2 + 25a-6z4 - 17a-6z6 + 5a-6z8 + 2a-5z-1 - 9a-5z + 14a-5z3 - 8a-5z5 + a-5z7 + a-5z9 - a-4z-2 + 5a-4 - 10a-4z2 + 11a-4z4 - 5a-4z6 + 2a-4z8 + a-3z5 + a-3z7 - a-2 - 3a-2z2 + 4a-2z4 + a-1z3

Khovanov Homology:
trqj r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19         1
j = 17        21
j = 15       3  
j = 13      32  
j = 11     53   
j = 9    33    
j = 7   55     
j = 5  25      
j = 3 23       
j = 1 3        
j = -11         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 422]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 422]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 8, 17, 7], X[3, 10, 4, 11], X[2, 18, 3, 17], 
 
>   X[9, 19, 10, 18], X[20, 12, 21, 11], X[14, 6, 15, 5], X[22, 15, 13, 16], 
 
>   X[6, 14, 1, 13], X[19, 5, 20, 4], X[12, 22, 7, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 10, 7, -9}, {2, -1, -5, 3, 6, -11}, 
 
>   {9, -7, 8, -2, 4, 5, -10, -6, 11, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
              2      3      4      5      6      7      8    9
-1 + 4 q - 5 q  + 8 q  - 8 q  + 8 q  - 6 q  + 5 q  - 2 q  + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
        2      6      8      12    14      16      18      20      22    24
-1 + 2 q  + 2 q  + 3 q  + 3 q   + q   + 4 q   + 4 q   + 2 q   + 4 q   + q   + 
 
     26    28
>   q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 422]][a, z]
Out[8]=   
                                              2      2      2    2      4
2    6    3     -2     1       2       1     z    6 z    6 z    z    2 z
-- - -- + -- + a   + ----- - ----- + ----- + -- - ---- + ---- - -- - ---- + 
 8    6    4          8  2    6  2    4  2    8     6      4     2     6
a    a    a          a  z    a  z    a  z    a     a      a     a     a
 
       4    4    6
    4 z    z    z
>   ---- - -- + --
      4     2    4
     a     a    a
In[9]:=
Kauffman[Link[11, NonAlternating, 422]][a, z]
Out[9]=   
  -10   5    11   5     -2     1       2       1      2      2     9 z   9 z
-a    + -- + -- + -- - a   - ----- - ----- - ----- + ---- + ---- - --- - --- + 
         8    6    4          8  2    6  2    4  2    7      5      7     5
        a    a    a          a  z    a  z    a  z    a  z   a  z   a     a
 
       2       2       2       2      2      3       3       3    3      4
    4 z    12 z    23 z    10 z    3 z    3 z    18 z    14 z    z    4 z
>   ---- - ----- - ----- - ----- - ---- + ---- + ----- + ----- + -- - ---- + 
     10      8       6       4       2      9      7       5     a     10
    a       a       a       a       a      a      a       a           a
 
        4       4       4      4      5       5      5    5    6        6
    14 z    25 z    11 z    4 z    6 z    15 z    8 z    z    z     11 z
>   ----- + ----- + ----- + ---- - ---- - ----- - ---- + -- + --- - ----- - 
      8       6       4       2      9      7       5     3    10     8
     a       a       a       a      a      a       a     a    a      a
 
        6      6      7      7    7    7      8      8      8    9    9
    17 z    5 z    2 z    2 z    z    z    3 z    5 z    2 z    z    z
>   ----- - ---- + ---- + ---- + -- + -- + ---- + ---- + ---- + -- + --
      6       4      9      7     5    3     8      6      4     7    5
     a       a      a      a     a    a     a      a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3    1       3        5        5  2      7  2      7  3      9  3
3 q + 2 q  + --- + 3 q  t + 2 q  t + 5 q  t  + 5 q  t  + 5 q  t  + 3 q  t  + 
             q t
 
       9  4      11  4      11  5      13  5      13  6      15  6      17  7
>   3 q  t  + 5 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 3 q   t  + 2 q   t  + 
 
     17  8    19  8
>   q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n422
L11n421
L11n421
L11n423
L11n423