PD Presentation: |
X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X3849 X22,14,19,13 X20,10,21,9 X10,20,11,19 X14,22,15,21 X11,18,12,5 X15,2,16,3 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 390]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 390]] |
Out[4]= | PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[5, 12, 6, 13],
> X[3, 8, 4, 9], X[22, 14, 19, 13], X[20, 10, 21, 9], X[10, 20, 11, 19],
> X[14, 22, 15, 21], X[11, 18, 12, 5], X[15, 2, 16, 3]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 11, -5, -3}, {8, -7, 9, -6},
> {-4, -1, 2, 5, 7, -8, -10, 4, 6, -9, -11, -2, 3, 10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -7 3 3 3 4 2 2 2
1 + q - -- + -- - -- + -- - -- + - + q
6 5 4 3 2 q
q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 2 2 -16 2 -12 -10 4 5 5 7 2
4 + q - --- - --- - q - --- + q + q + -- + -- + -- + -- + 3 q +
20 18 14 8 6 4 2
q q q q q q q
4 6
> 2 q + q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 390]][a, z] |
Out[8]= | 2 4 6
2 4 6 2 5 a 4 a a 2 2 2 4 2
6 - 13 a + 8 a - a + -- - ---- + ---- - -- + 5 z - 14 a z + 4 a z +
2 2 2 2
z z z z
6 2 4 2 4 2 6
> a z + z - 7 a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 390]][a, z] |
Out[9]= | 2 4 6 3 5 7
2 4 6 2 5 a 4 a a 5 a 9 a 5 a a
11 + 21 a + 12 a + a - -- - ---- - ---- - -- + --- + ---- + ---- + -- -
2 2 2 2 z z z z
z z z z
3 5 2 2 2 4 2 8 2 3
> 18 a z - 27 a z - 9 a z - 23 z - 37 a z - 13 a z - a z + 22 a z +
3 3 7 3 4 2 4 4 4 6 4 8 4
> 28 a z - 6 a z + 21 z + 31 a z + 6 a z - 3 a z + a z -
5 3 5 5 5 7 5 6 2 6 6 6 7
> 9 a z - 9 a z + 3 a z + 3 a z - 8 z - 10 a z + 2 a z + a z +
3 7 8 2 8
> a z + z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 3 1 2 1 1 3 3 2 3
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 2 5 2
q q t q t q t q t q t q t q t q t
1 1 2 t 2 3 4 5 4
> ---- + ---- + ---- + -- + q t + q t + q t
7 5 3 3
q t q t q t q |