© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n37
L11n37
L11n39
L11n39
L11n38
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n38

Visit L11n38's page at Knotilus!

Acknowledgement

L11n38 as Morse Link
DrawMorseLink

PD Presentation: X6172 X20,7,21,8 X4,21,1,22 X5,12,6,13 X3849 X9,16,10,17 X13,19,14,18 X17,15,18,14 X15,10,16,11 X11,22,12,5 X19,2,20,3

Gauss Code: {{1, 11, -5, -3}, {-4, -1, 2, 5, -6, 9, -10, 4, -7, 8, -9, 6, -8, 7, -11, -2, 3, 10}}

Jones Polynomial: q-19/2 - 2q-17/2 + 4q-15/2 - 6q-13/2 + 5q-11/2 - 6q-9/2 + 5q-7/2 - 4q-5/2 + 2q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 - q-32 - q-28 + q-26 + 2q-22 + 2q-20 + q-18 + 3q-16 - q-14 + q-12 + q-8 + q-6 + q-2

HOMFLY-PT Polynomial: - a3z-1 - 4a3z - 4a3z3 - a3z5 + 2a5z-1 + 7a5z + 8a5z3 + 5a5z5 + a5z7 - 3a7z-1 - 10a7z - 9a7z3 - 2a7z5 + 3a9z-1 + 5a9z + a9z3 - a11z-1

Kauffman Polynomial: - a3z-1 + 5a3z - 8a3z3 + 5a3z5 - a3z7 + 4a4z2 - 11a4z4 + 9a4z6 - 2a4z8 - 2a5z-1 + 12a5z - 24a5z3 + 15a5z5 - a5z9 - 2a6 + 11a6z2 - 24a6z4 + 21a6z6 - 5a6z8 - 3a7z-1 + 16a7z - 32a7z3 + 22a7z5 - 2a7z7 - a7z9 + 4a8z2 - 11a8z4 + 11a8z6 - 3a8z8 - 3a9z-1 + 11a9z - 18a9z3 + 12a9z5 - 3a9z7 + 2a10 - 4a10z2 + 2a10z4 - a10z6 - a11z-1 + 2a11z - 2a11z3 + a12 - a12z2

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0         1
j = -2        1 
j = -4       31 
j = -6      32  
j = -8     32   
j = -10   133    
j = -12   43     
j = -14  13      
j = -16 13       
j = -18 1        
j = -201         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 38]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 38]]
Out[4]=   
PD[X[6, 1, 7, 2], X[20, 7, 21, 8], X[4, 21, 1, 22], X[5, 12, 6, 13], 
 
>   X[3, 8, 4, 9], X[9, 16, 10, 17], X[13, 19, 14, 18], X[17, 15, 18, 14], 
 
>   X[15, 10, 16, 11], X[11, 22, 12, 5], X[19, 2, 20, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 11, -5, -3}, {-4, -1, 2, 5, -6, 9, -10, 4, -7, 8, -9, 6, -8, 7, 
 
>    -11, -2, 3, 10}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(19/2)     2       4       6       5      6      5      4      2        1
q        - ----- + ----- - ----- + ----- - ---- + ---- - ---- + ---- - -------
            17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -32    -28    -26    2     2     -18    3     -14    -12    -8    -6
-q    - q    - q    + q    + --- + --- + q    + --- - q    + q    + q   + q   + 
                              22    20           16
                             q     q            q
 
     -2
>   q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 38]][a, z]
Out[8]=   
   3       5      7      9    11
  a     2 a    3 a    3 a    a        3        5         7        9
-(--) + ---- - ---- + ---- - --- - 4 a  z + 7 a  z - 10 a  z + 5 a  z - 
  z      z      z      z      z
 
       3  3      5  3      7  3    9  3    3  5      5  5      7  5    5  7
>   4 a  z  + 8 a  z  - 9 a  z  + a  z  - a  z  + 5 a  z  - 2 a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 38]][a, z]
Out[9]=   
                       3      5      7      9    11
    6      10    12   a    2 a    3 a    3 a    a        3         5
-2 a  + 2 a   + a   - -- - ---- - ---- - ---- - --- + 5 a  z + 12 a  z + 
                      z     z      z      z      z
 
        7         9        11        4  2       6  2      8  2      10  2
>   16 a  z + 11 a  z + 2 a   z + 4 a  z  + 11 a  z  + 4 a  z  - 4 a   z  - 
 
     12  2      3  3       5  3       7  3       9  3      11  3       4  4
>   a   z  - 8 a  z  - 24 a  z  - 32 a  z  - 18 a  z  - 2 a   z  - 11 a  z  - 
 
        6  4       8  4      10  4      3  5       5  5       7  5       9  5
>   24 a  z  - 11 a  z  + 2 a   z  + 5 a  z  + 15 a  z  + 22 a  z  + 12 a  z  + 
 
       4  6       6  6       8  6    10  6    3  7      7  7      9  7
>   9 a  z  + 21 a  z  + 11 a  z  - a   z  - a  z  - 2 a  z  - 3 a  z  - 
 
       4  8      6  8      8  8    5  9    7  9
>   2 a  z  - 5 a  z  - 3 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    3      1        1        1        3        1        3        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    20  7    18  6    16  6    16  5    14  5    14  4    12  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        3        3        3        3      2      3     t    t     2
>   ------ + ------ + ------ + ------ + ----- + ---- + ---- + -- + -- + t
     10  4    12  3    10  3    10  2    8  2    8      6      4    2
    q   t    q   t    q   t    q   t    q  t    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n38
L11n37
L11n37
L11n39
L11n39