PD Presentation: |
X6172 X20,7,21,8 X4,21,1,22 X14,10,15,9 X8493 X5,13,6,12 X13,5,14,22 X18,16,19,15 X16,11,17,12 X10,17,11,18 X2,20,3,19 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 34]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 34]] |
Out[4]= | PD[X[6, 1, 7, 2], X[20, 7, 21, 8], X[4, 21, 1, 22], X[14, 10, 15, 9],
> X[8, 4, 9, 3], X[5, 13, 6, 12], X[13, 5, 14, 22], X[18, 16, 19, 15],
> X[16, 11, 17, 12], X[10, 17, 11, 18], X[2, 20, 3, 19]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, 5, -3}, {-6, -1, 2, -5, 4, -10, 9, 6, -7, -4, 8, -9, 10, -8,
> 11, -2, 3, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(9/2) 4 7 12 14 3/2 5/2
q - ---- + ---- - ---- + ------- - 15 Sqrt[q] + 14 q - 11 q +
7/2 5/2 3/2 Sqrt[q]
q q q
7/2 9/2
> 7 q - 3 q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -14 -12 2 5 -2 2 4 6 8 10 12
1 - q + q + --- + -- + q - 4 q + 2 q - 4 q + 2 q + q - q +
10 6
q q
14 18
> 3 q + q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 34]][a, z] |
Out[8]= | 3 3 3
1 2 1 a a z 4 z 4 z 3 3 z 6 z
-(----) + ---- - --- - - + -- - -- + --- - --- + 2 a z - a z + ---- - ---- +
5 3 a z z z 5 3 a 3 a
a z a z a a a
5 5 7
3 3 3 z 4 z 5 z
> 5 a z - a z + -- - ---- + 2 a z - --
3 a a
a |
In[9]:= | Kauffman[Link[11, NonAlternating, 34]][a, z] |
Out[9]= | 3
-4 3 2 1 2 1 a a 5 z 15 z 14 z
-2 - a - -- - a - ---- - ---- - --- + - + -- + --- + ---- + ---- + 5 a z +
2 5 3 a z z z 5 3 a
a a z a z a a
2 2 3 3 3
3 2 3 z 6 z 2 2 4 2 6 z 24 z 36 z
> a z + 3 z + ---- + ---- - a z - a z - ---- - ----- - ----- -
4 2 5 3 a
a a a a
4 4 5
3 3 3 4 3 z 8 z 2 4 4 4 16 z
> 27 a z - 9 a z - 9 z - ---- - ---- - 2 a z + 2 a z + ----- +
4 2 3
a a a
5 6 6
40 z 5 3 5 6 3 z 10 z 2 6 4 6
> ----- + 35 a z + 11 a z + 24 z - ---- + ----- + 10 a z - a z -
a 4 2
a a
7 7 8 9
8 z 13 z 7 3 7 8 7 z 2 8 2 z 9
> ---- - ----- - 9 a z - 4 a z - 12 z - ---- - 5 a z - ---- - 2 a z
3 a 2 a
a a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 1 3 1 4 3 8 4 8 6
9 + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + ---- +
10 5 8 4 6 4 6 3 4 3 4 2 2 2 t 2
q t q t q t q t q t q t q t q t
2 4 4 2 6 2 6 3 8 3 10 4
> 7 q t + 7 q t + 4 q t + 7 q t + 3 q t + 4 q t + 3 q t |