© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n300
L11n300
L11n302
L11n302
L11n301
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n301

Visit L11n301's page at Knotilus!

Acknowledgement

L11n301 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,13,4,12 X13,21,14,20 X19,11,20,22 X15,5,16,10 X17,9,18,8 X7,17,8,16 X9,19,10,18 X21,15,22,14 X2536 X11,1,12,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -7, 6, -8, 5}, {-11, 2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}}

Jones Polynomial: 3q2 - 4q3 + 9q4 - 10q5 + 12q6 - 11q7 + 9q8 - 6q9 + 3q10 - q11

A2 (sl(3)) Invariant: 3q6 + q8 + 6q10 + 5q12 + 4q14 + 7q16 + q18 + 4q20 + q26 - 3q28 - q32 - q34

HOMFLY-PT Polynomial: - a-10z-2 - 2a-10 - a-10z2 + 4a-8z-2 + 11a-8 + 10a-8z2 + 3a-8z4 - 5a-6z-2 - 18a-6 - 20a-6z2 - 10a-6z4 - 2a-6z6 + 2a-4z-2 + 9a-4 + 10a-4z2 + 3a-4z4

Kauffman Polynomial: a-13z - 2a-13z3 + a-13z5 - a-12 + 3a-12z2 - 6a-12z4 + 3a-12z6 + a-11z-1 - 2a-11z + a-11z3 - 6a-11z5 + 4a-11z7 - a-10z-2 + 6a-10z2 - 9a-10z4 + 3a-10z8 + 5a-9z-1 - 19a-9z + 33a-9z3 - 26a-9z5 + 8a-9z7 + a-9z9 - 4a-8z-2 + 13a-8 - 19a-8z2 + 23a-8z4 - 17a-8z6 + 7a-8z8 + 9a-7z-1 - 35a-7z + 48a-7z3 - 28a-7z5 + 7a-7z7 + a-7z9 - 5a-6z-2 + 22a-6 - 38a-6z2 + 32a-6z4 - 14a-6z6 + 4a-6z8 + 5a-5z-1 - 19a-5z + 18a-5z3 - 9a-5z5 + 3a-5z7 - 2a-4z-2 + 11a-4 - 16a-4z2 + 6a-4z4

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23         1
j = 21        2 
j = 19       41 
j = 17      52  
j = 15     75   
j = 13    54    
j = 11   57     
j = 9  45      
j = 7 16       
j = 523        
j = 33         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 301]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 301]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 13, 4, 12], X[13, 21, 14, 20], X[19, 11, 20, 22], 
 
>   X[15, 5, 16, 10], X[17, 9, 18, 8], X[7, 17, 8, 16], X[9, 19, 10, 18], 
 
>   X[21, 15, 22, 14], X[2, 5, 3, 6], X[11, 1, 12, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -7, 6, -8, 5}, 
 
>   {-11, 2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
   2      3      4       5       6       7      8      9      10    11
3 q  - 4 q  + 9 q  - 10 q  + 12 q  - 11 q  + 9 q  - 6 q  + 3 q   - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
   6    8      10      12      14      16    18      20    26      28    32
3 q  + q  + 6 q   + 5 q   + 4 q   + 7 q   + q   + 4 q   + q   - 3 q   - q   - 
 
     34
>   q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 301]][a, z]
Out[8]=   
                                                       2        2       2
-2    11   18   9      1        4       5       2     z     10 z    20 z
--- + -- - -- + -- - ------ + ----- - ----- + ----- - --- + ----- - ----- + 
 10    8    6    4    10  2    8  2    6  2    4  2    10     8       6
a     a    a    a    a   z    a  z    a  z    a  z    a      a       a
 
        2      4       4      4      6
    10 z    3 z    10 z    3 z    2 z
>   ----- + ---- - ----- + ---- - ----
      4       8      6       4      6
     a       a      a       a      a
In[9]:=
Kauffman[Link[11, NonAlternating, 301]][a, z]
Out[9]=   
  -12   13   22   11     1        4       5       2       1      5      9
-a    + -- + -- + -- - ------ - ----- - ----- - ----- + ----- + ---- + ---- + 
         8    6    4    10  2    8  2    6  2    4  2    11      9      7
        a    a    a    a   z    a  z    a  z    a  z    a   z   a  z   a  z
 
                                               2      2       2       2
     5      z    2 z   19 z   35 z   19 z   3 z    6 z    19 z    38 z
>   ---- + --- - --- - ---- - ---- - ---- + ---- + ---- - ----- - ----- - 
     5      13    11     9      7      5     12     10      8       6
    a  z   a     a      a      a      a     a      a       a       a
 
        2      3    3        3       3       3      4      4       4       4
    16 z    2 z    z     33 z    48 z    18 z    6 z    9 z    23 z    32 z
>   ----- - ---- + --- + ----- + ----- + ----- - ---- - ---- + ----- + ----- + 
      4      13     11     9       7       5      12     10      8       6
     a      a      a      a       a       a      a      a       a       a
 
       4    5       5       5       5      5      6       6       6      7
    6 z    z     6 z    26 z    28 z    9 z    3 z    17 z    14 z    4 z
>   ---- + --- - ---- - ----- - ----- - ---- + ---- - ----- - ----- + ---- + 
      4     13    11      9       7       5     12      8       6      11
     a     a     a       a       a       a     a       a       a      a
 
       7      7      7      8      8      8    9    9
    8 z    7 z    3 z    3 z    7 z    4 z    z    z
>   ---- + ---- + ---- + ---- + ---- + ---- + -- + --
      9      7      5     10      8      6     9    7
     a      a      a     a       a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
   3      5      5      7        7  2      9  2      9  3      11  3
3 q  + 2 q  + 3 q  t + q  t + 6 q  t  + 4 q  t  + 5 q  t  + 5 q   t  + 
 
       11  4      13  4      13  5      15  5      15  6      17  6
>   7 q   t  + 5 q   t  + 4 q   t  + 7 q   t  + 5 q   t  + 5 q   t  + 
 
       17  7      19  7    19  8      21  8    23  9
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n301
L11n300
L11n300
L11n302
L11n302