© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n298
L11n298
L11n300
L11n300
L11n299
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n299

Visit L11n299's page at Knotilus!

Acknowledgement

L11n299 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X13,19,14,18 X17,11,18,22 X7,17,8,16 X21,8,22,9 X9,14,10,15 X15,20,16,21 X19,5,20,10 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, -5, 6, -7, 9}, {11, -2, -3, 7, -8, 5, -4, 3, -9, 8, -6, 4}}

Jones Polynomial: - q-7 + 3q-6 - 3q-5 + 4q-4 - 2q-3 + 3q-2 + q - 2q2 + q3

A2 (sl(3)) Invariant: - q-22 + 2q-18 + 3q-16 + 5q-14 + 4q-12 + 6q-10 + 4q-8 + 2q-6 + 2q-4 - q-2 + 1 - q8 + q10

HOMFLY-PT Polynomial: a-2z2 + 1 + z2 + a2z-2 - a2 - 6a2z2 - 5a2z4 - a2z6 - 2a4z-2 + a4 + 6a4z2 + 2a4z4 + a6z-2 - a6 - a6z2

Kauffman Polynomial: 2a-2z2 - 4a-2z4 + a-2z6 - 2a-1z + 10a-1z3 - 10a-1z5 + 2a-1z7 + 2 - 7z2 + 8z4 - 6z6 + z8 - 7az + 21az3 - 15az5 + 2az7 + a2z-2 + 4a2 - 30a2z2 + 48a2z4 - 27a2z6 + 4a2z8 - 2a3z-1 - 7a3z + 18a3z3 - 9a3z7 + 2a3z9 + 2a4z-2 + 3a4 - 29a4z2 + 55a4z4 - 35a4z6 + 6a4z8 - 2a5z-1 - 3a5z + 10a5z3 + a5z5 - 8a5z7 + 2a5z9 + a6z-2 - 8a6z2 + 19a6z4 - 15a6z6 + 3a6z8 - a7z + 3a7z3 - 4a7z5 + a7z7

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          1 
j = 3        111 
j = 1       221  
j = -1      231   
j = -3     333    
j = -5    351     
j = -7   222      
j = -9  241       
j = -11 11         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 299]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 299]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[13, 19, 14, 18], X[17, 11, 18, 22], 
 
>   X[7, 17, 8, 16], X[21, 8, 22, 9], X[9, 14, 10, 15], X[15, 20, 16, 21], 
 
>   X[19, 5, 20, 10], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -5, 6, -7, 9}, 
 
>   {11, -2, -3, 7, -8, 5, -4, 3, -9, 8, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -7   3    3    4    2    3           2    3
-q   + -- - -- + -- - -- + -- + q - 2 q  + q
        6    5    4    3    2
       q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    2     3     5     4     6    4    2    2     -2    8    10
1 - q    + --- + --- + --- + --- + --- + -- + -- + -- - q   - q  + q
            18    16    14    12    10    8    6    4
           q     q     q     q     q     q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 299]][a, z]
Out[8]=   
                    2      4    6         2
     2    4    6   a    2 a    a     2   z       2  2      4  2    6  2
1 - a  + a  - a  + -- - ---- + -- + z  + -- - 6 a  z  + 6 a  z  - a  z  - 
                    2     2     2         2
                   z     z     z         a
 
       2  4      4  4    2  6
>   5 a  z  + 2 a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 299]][a, z]
Out[9]=   
                   2      4    6      3      5
       2      4   a    2 a    a    2 a    2 a    2 z              3
2 + 4 a  + 3 a  + -- + ---- + -- - ---- - ---- - --- - 7 a z - 7 a  z - 
                   2     2     2    z      z      a
                  z     z     z
 
                              2                                       3
       5      7        2   2 z        2  2       4  2      6  2   10 z
>   3 a  z - a  z - 7 z  + ---- - 30 a  z  - 29 a  z  - 8 a  z  + ----- + 
                             2                                      a
                            a
 
                                                        4
          3       3  3       5  3      7  3      4   4 z        2  4
>   21 a z  + 18 a  z  + 10 a  z  + 3 a  z  + 8 z  - ---- + 48 a  z  + 
                                                       2
                                                      a
 
                              5                                       6
        4  4       6  4   10 z          5    5  5      7  5      6   z
>   55 a  z  + 19 a  z  - ----- - 15 a z  + a  z  - 4 a  z  - 6 z  + -- - 
                            a                                         2
                                                                     a
 
                                        7
        2  6       4  6       6  6   2 z         7      3  7      5  7
>   27 a  z  - 35 a  z  - 15 a  z  + ---- + 2 a z  - 9 a  z  - 8 a  z  + 
                                      a
 
     7  7    8      2  8      4  8      6  8      3  9      5  9
>   a  z  + z  + 4 a  z  + 6 a  z  + 3 a  z  + 2 a  z  + 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    3           1        2        1        1        2       4       2
-- + - + 2 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + 
 3   q          15  7    13  6    11  6    11  5    9  5    9  4    7  4
q              q   t    q   t    q   t    q   t    q  t    q  t    q  t
 
      1       2       3       2       5       3      1      3      2    t
>   ----- + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + - + 
     9  3    7  3    5  3    7  2    5  2    3  2    5      3     q t   q
    q  t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
             3        2    3  2    3  3    5  3    7  4
>   2 q t + q  t + q t  + q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n299
L11n298
L11n298
L11n300
L11n300