© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n295
L11n295
L11n297
L11n297
L11n296
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n296

Visit L11n296's page at Knotilus!

Acknowledgement

L11n296 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X15,20,16,21 X14,8,15,7 X10,22,5,21 X18,11,19,12 X9,17,10,16 X22,17,11,18 X19,9,20,8 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, 9, -7, -5}, {6, -2, 11, -4, -3, 7, 8, -6, -9, 3, 5, -8}}

Jones Polynomial: - q-3 + 2q-2 - 4q-1 + 6 - 5q + 7q2 - 4q3 + 4q4 - 2q5 + q6

A2 (sl(3)) Invariant: - q-10 - q-8 - q-6 - 3q-4 + 3q2 + 6q4 + 6q6 + 8q8 + 4q10 + 3q12 + 2q14 + q18

HOMFLY-PT Polynomial: 2a-4z-2 + 3a-4 + 3a-4z2 + a-4z4 - 5a-2z-2 - 10a-2 - 10a-2z2 - 5a-2z4 - a-2z6 + 4z-2 + 9 + 7z2 + 2z4 - a2z-2 - 2a2 - a2z2

Kauffman Polynomial: 3a-6z2 - 4a-6z4 + a-6z6 + 4a-5z3 - 7a-5z5 + 2a-5z7 - 2a-4z-2 + 10a-4 - 22a-4z2 + 23a-4z4 - 14a-4z6 + 3a-4z8 + 5a-3z-1 - 16a-3z + 23a-3z3 - 13a-3z5 + a-3z9 - 5a-2z-2 + 20a-2 - 44a-2z2 + 48a-2z4 - 25a-2z6 + 5a-2z8 + 9a-1z-1 - 27a-1z + 30a-1z3 - 10a-1z5 - a-1z7 + a-1z9 - 4z-2 + 13 - 22z2 + 23z4 - 10z6 + 2z8 + 5az-1 - 13az + 12az3 - 4az5 + az7 - a2z-2 + 2a2 - 3a2z2 + 2a2z4 + a3z-1 - 2a3z + a3z3

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13         1
j = 11        21
j = 9       2  
j = 7      22  
j = 5     52   
j = 3    13    
j = 1   54     
j = -1  13      
j = -3 13       
j = -5 1        
j = -71         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 296]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 296]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[15, 20, 16, 21], X[14, 8, 15, 7], 
 
>   X[10, 22, 5, 21], X[18, 11, 19, 12], X[9, 17, 10, 16], X[22, 17, 11, 18], 
 
>   X[19, 9, 20, 8], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, 9, -7, -5}, 
 
>   {6, -2, 11, -4, -3, 7, 8, -6, -9, 3, 5, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
     -3   2    4            2      3      4      5    6
6 - q   + -- - - - 5 q + 7 q  - 4 q  + 4 q  - 2 q  + q
           2   q
          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -10    -8    -6   3       2      4      6      8      10      12      14    18
-q    - q   - q   - -- + 3 q  + 6 q  + 6 q  + 8 q  + 4 q   + 3 q   + 2 q   + q
                     4
                    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 296]][a, z]
Out[8]=   
                                           2             2       2
    3    10      2   4      2       5     a       2   3 z    10 z     2  2
9 + -- - -- - 2 a  + -- + ----- - ----- - -- + 7 z  + ---- - ----- - a  z  + 
     4    2           2    4  2    2  2    2            4      2
    a    a           z    a  z    a  z    z            a      a
 
            4      4    6
       4   z    5 z    z
>   2 z  + -- - ---- - --
            4     2     2
           a     a     a
In[9]:=
Kauffman[Link[11, NonAlternating, 296]][a, z]
Out[9]=   
                                            2                       3
     10   20      2   4      2       5     a     5      9    5 a   a    16 z
13 + -- + -- + 2 a  - -- - ----- - ----- - -- + ---- + --- + --- + -- - ---- - 
      4    2           2    4  2    2  2    2    3     a z    z    z      3
     a    a           z    a  z    a  z    z    a  z                     a
 
                                        2       2       2                3
    27 z               3         2   3 z    22 z    44 z       2  2   4 z
>   ---- - 13 a z - 2 a  z - 22 z  + ---- - ----- - ----- - 3 a  z  + ---- + 
     a                                 6      4       2                 5
                                      a      a       a                 a
 
        3       3                                4       4       4
    23 z    30 z          3    3  3       4   4 z    23 z    48 z       2  4
>   ----- + ----- + 12 a z  + a  z  + 23 z  - ---- + ----- + ----- + 2 a  z  - 
      3       a                                 6      4       2
     a                                         a      a       a
 
       5       5       5                     6       6       6      7    7
    7 z    13 z    10 z         5       6   z    14 z    25 z    2 z    z
>   ---- - ----- - ----- - 4 a z  - 10 z  + -- - ----- - ----- + ---- - -- + 
      5      3       a                       6     4       2       5    a
     a      a                               a     a       a       a
 
                     8      8    9    9
       7      8   3 z    5 z    z    z
>   a z  + 2 z  + ---- + ---- + -- + --
                    4      2     3   a
                   a      a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
3           1       1       1      3      1             3        3  2
- + 5 q + ----- + ----- + ----- + ---- + --- + 4 q t + q  t + 3 q  t  + 
q          7  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t
 
       5  2      5  3      7  3      7  4      9  4      11  5    11  6    13  6
>   5 q  t  + 2 q  t  + 2 q  t  + 2 q  t  + 2 q  t  + 2 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n296
L11n295
L11n295
L11n297
L11n297