© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n294
L11n294
L11n296
L11n296
L11n295
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n295

Visit L11n295's page at Knotilus!

Acknowledgement

L11n295 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X20,16,21,15 X14,8,15,7 X21,10,22,5 X11,19,12,18 X9,17,10,16 X17,11,18,22 X8,19,9,20 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -9, -7, 5}, {-6, -2, 11, -4, 3, 7, -8, 6, 9, -3, -5, 8}}

Jones Polynomial: 2q-1 - 3 + 8q - 8q2 + 11q3 - 10q4 + 8q5 - 6q6 + 3q7 - q8

A2 (sl(3)) Invariant: 2q-4 + 2q-2 + 3 + 8q2 + 5q4 + 8q6 + 5q8 + q10 + q12 - 4q14 - 2q18 - 2q20 + q22 - q24

HOMFLY-PT Polynomial: - a-6z-2 - 2a-6 - 2a-6z2 - a-6z4 + 4a-4z-2 + 8a-4 + 8a-4z2 + 4a-4z4 + a-4z6 - 5a-2z-2 - 10a-2 - 9a-2z2 - 3a-2z4 + 2z-2 + 4 + 2z2

Kauffman Polynomial: - 2a-9z3 + a-9z5 + a-8z2 - 6a-8z4 + 3a-8z6 + a-7z-1 - 5a-7z + 11a-7z3 - 13a-7z5 + 5a-7z7 - a-6z-2 + 3a-6 - 6a-6z2 + 9a-6z4 - 9a-6z6 + 4a-6z8 + 5a-5z-1 - 18a-5z + 32a-5z3 - 23a-5z5 + 6a-5z7 + a-5z9 - 4a-4z-2 + 12a-4 - 24a-4z2 + 30a-4z4 - 18a-4z6 + 6a-4z8 + 9a-3z-1 - 24a-3z + 24a-3z3 - 10a-3z5 + 2a-3z7 + a-3z9 - 5a-2z-2 + 15a-2 - 25a-2z2 + 18a-2z4 - 6a-2z6 + 2a-2z8 + 5a-1z-1 - 11a-1z + 5a-1z3 - a-1z5 + a-1z7 - 2z-2 + 7 - 8z2 + 3z4

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17         1
j = 15        2 
j = 13       41 
j = 11      42  
j = 9     64   
j = 7    54    
j = 5   47     
j = 3  44      
j = 1 16       
j = -112        
j = -32         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 295]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 295]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[20, 16, 21, 15], X[14, 8, 15, 7], 
 
>   X[21, 10, 22, 5], X[11, 19, 12, 18], X[9, 17, 10, 16], X[17, 11, 18, 22], 
 
>   X[8, 19, 9, 20], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -9, -7, 5}, 
 
>   {-6, -2, 11, -4, 3, 7, -8, 6, 9, -3, -5, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
     2            2       3       4      5      6      7    8
-3 + - + 8 q - 8 q  + 11 q  - 10 q  + 8 q  - 6 q  + 3 q  - q
     q
In[7]:=
A2Invariant[L][q]
Out[7]=   
    2    2       2      4      6      8    10    12      14      18      20
3 + -- + -- + 8 q  + 5 q  + 8 q  + 5 q  + q   + q   - 4 q   - 2 q   - 2 q   + 
     4    2
    q    q
 
     22    24
>   q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 295]][a, z]
Out[8]=   
                                                          2      2      2
    2    8    10   2      1       4       5        2   2 z    8 z    9 z
4 - -- + -- - -- + -- - ----- + ----- - ----- + 2 z  - ---- + ---- - ---- - 
     6    4    2    2    6  2    4  2    2  2            6      4      2
    a    a    a    z    a  z    a  z    a  z            a      a      a
 
     4      4      4    6
    z    4 z    3 z    z
>   -- + ---- - ---- + --
     6     4      2     4
    a     a      a     a
In[9]:=
Kauffman[Link[11, NonAlternating, 295]][a, z]
Out[9]=   
    3    12   15   2      1       4       5      1      5      9      5
7 + -- + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + --- - 
     6    4    2    2    6  2    4  2    2  2    7      5      3     a z
    a    a    a    z    a  z    a  z    a  z    a  z   a  z   a  z
 
                                       2      2       2       2      3
    5 z   18 z   24 z   11 z      2   z    6 z    24 z    25 z    2 z
>   --- - ---- - ---- - ---- - 8 z  + -- - ---- - ----- - ----- - ---- + 
     7      5      3     a             8     6      4       2       9
    a      a      a                   a     a      a       a       a
 
        3       3       3      3             4      4       4       4    5
    11 z    32 z    24 z    5 z       4   6 z    9 z    30 z    18 z    z
>   ----- + ----- + ----- + ---- + 3 z  - ---- + ---- + ----- + ----- + -- - 
      7       5       3      a              8      6      4       2      9
     a       a       a                     a      a      a       a      a
 
        5       5       5    5      6      6       6      6      7      7
    13 z    23 z    10 z    z    3 z    9 z    18 z    6 z    5 z    6 z
>   ----- - ----- - ----- - -- + ---- - ---- - ----- - ---- + ---- + ---- + 
      7       5       3     a      8      6      4       2      7      5
     a       a       a            a      a      a       a      a      a
 
       7    7      8      8      8    9    9
    2 z    z    4 z    6 z    2 z    z    z
>   ---- + -- + ---- + ---- + ---- + -- + --
      3    a      6      4      2     5    3
     a           a      a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     2      1      2    q      3        5        5  2      7  2
6 q + 4 q  + ----- + ---- + --- + - + 4 q  t + 4 q  t + 7 q  t  + 5 q  t  + 
              3  2      2   q t   t
             q  t    q t
 
       7  3      9  3      9  4      11  4      11  5      13  5    13  6
>   4 q  t  + 6 q  t  + 4 q  t  + 4 q   t  + 2 q   t  + 4 q   t  + q   t  + 
 
       15  6    17  7
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n295
L11n294
L11n294
L11n296
L11n296