© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n271
L11n271
L11n273
L11n273
L11n272
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n272

Visit L11n272's page at Knotilus!

Acknowledgement

L11n272 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X7,17,8,16 X15,5,16,8 X18,11,19,12 X22,17,9,18 X12,21,13,22 X20,13,21,14 X14,19,15,20 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, 5, -7, 8, -9, -4, 3, 6, -5, 9, -8, 7, -6}}

Jones Polynomial: - q-7 + q-6 - 2q-5 + 2q-4 - q-3 + q-2 + q-1 + 1 + 2q - q2 + q3

A2 (sl(3)) Invariant: - q-22 - q-20 - 2q-18 - 3q-16 - 2q-14 - 2q-12 + q-10 + 2q-8 + 4q-6 + 6q-4 + 6q-2 + 7 + 5q2 + 3q4 + 2q6 + q8 + q10

HOMFLY-PT Polynomial: a-2z-2 + 2a-2 + a-2z2 - z-2 - 3 - 4z2 - z4 - 2a2z-2 - 3a2 - a2z2 + 3a4z-2 + 6a4 + 4a4z2 + a4z4 - a6z-2 - 2a6 - a6z2

Kauffman Polynomial: a-2z-2 - 4a-2 + 6a-2z2 - 5a-2z4 + a-2z6 - 2a-1z-1 + 4a-1z - 4a-1z5 + a-1z7 + z-2 - 3 + 5z2 + 3z4 - 5z6 + z8 + 2az-1 - 10az + 20az3 - 13az5 + 2az7 - 2a2z-2 + 4a2 - 3a2z2 + 7a2z4 - 6a2z6 + a2z8 + 10a3z-1 - 34a3z + 42a3z3 - 21a3z5 + 3a3z7 - 3a4z-2 + 5a4 - 4a4z2 + 5a4z4 - 5a4z6 + a4z8 + 8a5z-1 - 27a5z + 33a5z3 - 18a5z5 + 3a5z7 - a6z-2 + a6 - 2a6z2 + 6a6z4 - 5a6z6 + a6z8 + 2a7z-1 - 7a7z + 11a7z3 - 6a7z5 + a7z7

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          11
j = 3         1  
j = 1       311  
j = -1      251   
j = -3     1 1    
j = -5    132     
j = -7   21       
j = -9   11       
j = -11 12         
j = -13            
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 272]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 272]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[7, 17, 8, 16], X[15, 5, 16, 8], 
 
>   X[18, 11, 19, 12], X[22, 17, 9, 18], X[12, 21, 13, 22], X[20, 13, 21, 14], 
 
>   X[14, 19, 15, 20], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 4}, 
 
>   {-11, 2, 5, -7, 8, -9, -4, 3, 6, -5, 9, -8, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
     -7    -6   2    2     -3    -2   1          2    3
1 - q   + q   - -- + -- - q   + q   + - + 2 q - q  + q
                 5    4               q
                q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    -20    2     3     2     2     -10   2    4    6    6       2
7 - q    - q    - --- - --- - --- - --- + q    + -- + -- + -- + -- + 5 q  + 
                   18    16    14    12           8    6    4    2
                  q     q     q     q            q    q    q    q
 
       4      6    8    10
>   3 q  + 2 q  + q  + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 272]][a, z]
Out[8]=   
                                                2      4    6           2
     2       2      4      6    -2     1     2 a    3 a    a       2   z
-3 + -- - 3 a  + 6 a  - 2 a  - z   + ----- - ---- + ---- - -- - 4 z  + -- - 
      2                               2  2     2      2     2           2
     a                               a  z     z      z     z           a
 
     2  2      4  2    6  2    4    4  4
>   a  z  + 4 a  z  - a  z  - z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 272]][a, z]
Out[9]=   
                                              2      4    6
     4       2      4    6    -2     1     2 a    3 a    a     2    2 a
-3 - -- + 4 a  + 5 a  + a  + z   + ----- - ---- - ---- - -- - --- + --- + 
      2                             2  2     2      2     2   a z    z
     a                             a  z     z      z     z
 
        3      5      7
    10 a    8 a    2 a    4 z                3         5        7        2
>   ----- + ---- + ---- + --- - 10 a z - 34 a  z - 27 a  z - 7 a  z + 5 z  + 
      z      z      z      a
 
       2
    6 z       2  2      4  2      6  2         3       3  3       5  3
>   ---- - 3 a  z  - 4 a  z  - 2 a  z  + 20 a z  + 42 a  z  + 33 a  z  + 
      2
     a
 
                         4                                    5
        7  3      4   5 z       2  4      4  4      6  4   4 z          5
>   11 a  z  + 3 z  - ---- + 7 a  z  + 5 a  z  + 6 a  z  - ---- - 13 a z  - 
                        2                                   a
                       a
 
                                            6
        3  5       5  5      7  5      6   z       2  6      4  6      6  6
>   21 a  z  - 18 a  z  - 6 a  z  - 5 z  + -- - 6 a  z  - 5 a  z  - 5 a  z  + 
                                            2
                                           a
 
     7
    z         7      3  7      5  7    7  7    8    2  8    4  8    6  8
>   -- + 2 a z  + 3 a  z  + 3 a  z  + a  z  + z  + a  z  + a  z  + a  z
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
 -3   5           1        1        2        1       2       1       1
q   + - + 3 q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
      q          15  7    11  6    11  5    9  4    7  4    9  3    7  3
                q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      1       3       1      2      2    t            2    3  2    5  3
>   ----- + ----- + ----- + ---- + --- + - + q t + q t  + q  t  + q  t  + 
     5  3    5  2    3  2    5     q t   q
    q  t    q  t    q  t    q  t
 
     5  4    7  4
>   q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n272
L11n271
L11n271
L11n273
L11n273