© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n270
L11n270
L11n272
L11n272
L11n271
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n271

Visit L11n271's page at Knotilus!

Acknowledgement

L11n271 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X7,17,8,16 X15,5,16,8 X11,19,12,18 X17,9,18,22 X21,13,22,12 X13,21,14,20 X19,15,20,14 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, -5, 7, -8, 9, -4, 3, -6, 5, -9, 8, -7, 6}}

Jones Polynomial: 3q - 5q2 + 9q3 - 8q4 + 11q5 - 9q6 + 7q7 - 5q8 + 2q9 - q10

A2 (sl(3)) Invariant: 3q2 + 2q6 + 6q8 + 4q10 + 8q12 + 6q14 + 5q16 + 4q18 - q20 + q22 - 3q24 - 4q26 - q28 - 2q30 - q32

HOMFLY-PT Polynomial: - a-10z-2 - a-10 + 3a-8z-2 + 5a-8 + 3a-8z2 - 2a-6z-2 - 5a-6 - 4a-6z2 - 2a-6z4 - a-4z-2 - 2a-4 - 3a-4z2 - 2a-4z4 + a-2z-2 + 3a-2 + 3a-2z2

Kauffman Polynomial: 2a-11z-1 - 7a-11z + 9a-11z3 - 5a-11z5 + a-11z7 - a-10z-2 + a-10 - 2a-10z2 + 9a-10z4 - 8a-10z6 + 2a-10z8 + 8a-9z-1 - 27a-9z + 43a-9z3 - 26a-9z5 + 3a-9z7 + a-9z9 - 3a-8z-2 + 5a-8 - 8a-8z2 + 20a-8z4 - 23a-8z6 + 7a-8z8 + 10a-7z-1 - 34a-7z + 52a-7z3 - 43a-7z5 + 10a-7z7 + a-7z9 - 2a-6z-2 + 4a-6 - 3a-6z2 - a-6z4 - 8a-6z6 + 5a-6z8 + 2a-5z-1 - 10a-5z + 18a-5z3 - 19a-5z5 + 8a-5z7 + a-4z-2 - 3a-4 + 9a-4z2 - 12a-4z4 + 7a-4z6 - 2a-3z-1 + 4a-3z + 3a-3z5 + a-2z-2 - 4a-2 + 6a-2z2

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 21         1
j = 19        1 
j = 17       41 
j = 15      31  
j = 13     64   
j = 11    53    
j = 9   47     
j = 7  54      
j = 5  4       
j = 335        
j = 13         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 271]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 271]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[7, 17, 8, 16], X[15, 5, 16, 8], 
 
>   X[11, 19, 12, 18], X[17, 9, 18, 22], X[21, 13, 22, 12], X[13, 21, 14, 20], 
 
>   X[19, 15, 20, 14], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 4}, 
 
>   {-11, 2, -5, 7, -8, 9, -4, 3, -6, 5, -9, 8, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
         2      3      4       5      6      7      8      9    10
3 q - 5 q  + 9 q  - 8 q  + 11 q  - 9 q  + 7 q  - 5 q  + 2 q  - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
   2      6      8      10      12      14      16      18    20    22
3 q  + 2 q  + 6 q  + 4 q   + 8 q   + 6 q   + 5 q   + 4 q   - q   + q   - 
 
       24      26    28      30    32
>   3 q   - 4 q   - q   - 2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 271]][a, z]
Out[8]=   
                                                                        2
  -10   5    5    2    3      1        3       2       1       1     3 z
-a    + -- - -- - -- + -- - ------ + ----- - ----- - ----- + ----- + ---- - 
         8    6    4    2    10  2    8  2    6  2    4  2    2  2     8
        a    a    a    a    a   z    a  z    a  z    a  z    a  z     a
 
       2      2      2      4      4
    4 z    3 z    3 z    2 z    2 z
>   ---- - ---- + ---- - ---- - ----
      6      4      2      6      4
     a      a      a      a      a
In[9]:=
Kauffman[Link[11, NonAlternating, 271]][a, z]
Out[9]=   
 -10   5    4    3    4      1        3       2       1       1       2
a    + -- + -- - -- - -- - ------ - ----- - ----- + ----- + ----- + ----- + 
        8    6    4    2    10  2    8  2    6  2    4  2    2  2    11
       a    a    a    a    a   z    a  z    a  z    a  z    a  z    a   z
 
                                                                    2      2
     8      10     2      2     7 z   27 z   34 z   10 z   4 z   2 z    8 z
>   ---- + ---- + ---- - ---- - --- - ---- - ---- - ---- + --- - ---- - ---- - 
     9      7      5      3      11     9      7      5     3     10      8
    a  z   a  z   a  z   a  z   a      a      a      a     a     a       a
 
       2      2      2      3       3       3       3      4       4    4
    3 z    9 z    6 z    9 z    43 z    52 z    18 z    9 z    20 z    z
>   ---- + ---- + ---- + ---- + ----- + ----- + ----- + ---- + ----- - -- - 
      6      4      2     11      9       7       5      10      8      6
     a      a      a     a       a       a       a      a       a      a
 
        4      5       5       5       5      5      6       6      6      6
    12 z    5 z    26 z    43 z    19 z    3 z    8 z    23 z    8 z    7 z
>   ----- - ---- - ----- - ----- - ----- + ---- - ---- - ----- - ---- + ---- + 
      4      11      9       7       5       3     10      8       6      4
     a      a       a       a       a       a     a       a       a      a
 
     7       7       7      7      8      8      8    9    9
    z     3 z    10 z    8 z    2 z    7 z    5 z    z    z
>   --- + ---- + ----- + ---- + ---- + ---- + ---- + -- + --
     11     9      7       5     10      8      6     9    7
    a      a      a       a     a       a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3      3        5  2      7  2      7  3      9  3      9  4
3 q + 3 q  + 5 q  t + 4 q  t  + 5 q  t  + 4 q  t  + 4 q  t  + 7 q  t  + 
 
       11  4      11  5      13  5      13  6      15  6    15  7      17  7
>   5 q   t  + 3 q   t  + 6 q   t  + 4 q   t  + 3 q   t  + q   t  + 4 q   t  + 
 
     17  8    19  8    21  9
>   q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n271
L11n270
L11n270
L11n272
L11n272